这是官网的一个例子,参考网上一些前辈的注释自己理解了一下.
#include <pcl/ModelCoefficients.h>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/filters/extract_indices.h>
#include <pcl/filters/passthrough.h>
#include <pcl/features/normal_3d.h>
#include <pcl/sample_consensus/method_types.h>
#include <pcl/sample_consensus/model_types.h>
#include <pcl/segmentation/sac_segmentation.h>
#include <pcl/filters/passthrough.h>
#include <pcl/visualization/pcl_visualizer.h>
//强制类型转换
typedef pcl::PointXYZ PointT;
int
main (int argc, char** argv)
{
//所属类,数据类型,名称
pcl::PCDReader reader; //读取pcd文件
pcl::PassThrough<PointT> pass; //直通滤波器
pcl::NormalEstimation<PointT, pcl::Normal> ne; //法线估计对象
pcl::SACSegmentationFromNormals<PointT, pcl::Normal> seg; //分割对象
pcl::PCDWriter writer; //写入pcd文件
pcl::ExtractIndices<PointT> extract; //点提取对象
pcl::ExtractIndices<pcl::Normal> extract_normals; //点提取对象
pcl::search::KdTree<PointT>::Ptr tree (new pcl::search::KdTree<PointT> ());
//点云消息转化,分别用指针存储
pcl::PointCloud<PointT>::Ptr cloud (new pcl::PointCloud<PointT>);
pcl::PointCloud<PointT>::Ptr cloud_filtered (new pcl::PointCloud<PointT>);
pcl::PointCloud<pcl::Normal>::Ptr cloud_normals (new pcl::PointCloud<pcl::Normal>);
pcl::PointCloud<PointT>::Ptr cloud_filtered2 (new pcl::PointCloud<PointT>);
pcl::PointCloud<pcl::Normal>::Ptr cloud_normals2 (new pcl::PointCloud<pcl::Normal>);
pcl::ModelCoefficients::Ptr coefficients_plane (new pcl::ModelCoefficients), coefficients_cylinder (new pcl::ModelCoefficients);
pcl::PointIndices::Ptr inliers_plane (new pcl::PointIndices), inliers_cylinder (new pcl::PointIndices);
//创建可视化窗口
pcl::visualization::PCLVisualizer viewer("滤波");
int v1(0); //设置左右窗口
int v2(1);
viewer.createViewPort(0.0, 0.0, 0.5, 1, v1);
viewer.setBackgroundColor(0, 0, 0, v1);
viewer.createViewPort(0.5, 0.0, 1, 1, v2);
viewer.setBackgroundColor(0.5, 0.5, 0.5, v2);
// Read in the cloud data
reader.read ("/home/zqh/table_scene_mug_stereo_textured.pcd", *cloud);
std::cerr << "PointCloud has: " << cloud->points.size () << " data points." << std::endl;
pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> cloud_out_green(cloud, 20, 180, 20); // 显示绿色点云
viewer.addPointCloud(cloud, cloud_out_green, "cloud_out1", v1);
pass.setInputCloud (cloud); //设置输入点云
pass.setFilterFieldName ("z"); //设置z轴为过滤字段
pass.setFilterLimits (0, 1.5);
pass.filter (*cloud_filtered); //将过滤之后的点云存入cloud_filtered
std::cerr << "PointCloud after filtering has: " << cloud_filtered->points.size () << " data points." << std::endl;
// 点云法线估计(过滤之后的),后续分割基于法线操作
ne.setSearchMethod (tree); //设置近邻搜索方式
ne.setInputCloud (cloud_filtered); //此时输入的点云为过滤之后的点云
ne.setKSearch (50); //计算点云法向量时,搜索的点云个数
ne.compute (*cloud_normals);
seg.setOptimizeCoefficients (true); //这一句可以选择最优化参数的因子
seg.setModelType (pcl::SACMODEL_NORMAL_PLANE);
seg.setNormalDistanceWeight (0.1);
seg.setMethodType (pcl::SAC_RANSAC);
seg.setMaxIterations (100);
seg.setDistanceThreshold (0.03);
seg.setInputCloud (cloud_filtered);
seg.setInputNormals (cloud_normals);
// Obtain the plane inliers and coefficients
seg.segment (*inliers_plane, *coefficients_plane); //分割 得到平面系数 已经在平面上的点的 索引
std::cerr << "Plane coefficients: " << *coefficients_plane << std::endl;
// Extract the planar inliers from the input cloud
extract.setInputCloud (cloud_filtered);
extract.setIndices (inliers_plane); //设置分割后点需要提取的点集
extract.setNegative (false); //设置提取内点而非外点
// 存储分割后平面上的点到点云文件
pcl::PointCloud<PointT>::Ptr cloud_plane (new pcl::PointCloud<PointT> ());
extract.filter (*cloud_plane);
std::cerr << "PointCloud representing the planar component: " << cloud_plane->points.size () << " data points." << std::endl;
// Remove the planar inliers, extract the rest
extract.setNegative (true);
extract.filter (*cloud_filtered2); //过滤之后保存到cloud_filtered2
extract_normals.setNegative (true);
extract_normals.setInputCloud (cloud_normals);
extract_normals.setIndices (inliers_plane); //索引平面内的点
extract_normals.filter (*cloud_normals2); //法线过滤之后存在cloud_normals2
seg.setOptimizeCoefficients (true); //设置对估计模型优化
seg.setModelType (pcl::SACMODEL_CYLINDER); //设置分割模型为圆柱形
seg.setMethodType (pcl::SAC_RANSAC);
seg.setNormalDistanceWeight (0.1); //设置表面法线权重系数
seg.setMaxIterations (10000);
seg.setDistanceThreshold (0.05); //内点到模型的距离允许的最大值
seg.setRadiusLimits (0, 0.1); //估计出圆柱模型的半径范围
seg.setInputCloud (cloud_filtered2);
seg.setInputNormals (cloud_normals2);
// Obtain the cylinder inliers and coefficients
seg.segment (*inliers_cylinder, *coefficients_cylinder);
std::cerr << "Cylinder coefficients: " << *coefficients_cylinder << std::endl;
// Write the cylinder inliers to disk
extract.setInputCloud (cloud_filtered2);
extract.setIndices (inliers_cylinder);
extract.setNegative (false);
pcl::PointCloud<PointT>::Ptr cloud_cylinder (new pcl::PointCloud<PointT> ());
extract.filter (*cloud_cylinder);
pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> cloud_out_orage(cloud_cylinder, 250, 128, 10); //显示橘色点云
viewer.addPointCloud(cloud_cylinder, cloud_out_orage, "cloud_out2", v2);
//viewer.setSize(960, 780);
while (!viewer.wasStopped())
{
viewer.spinOnce();
}
return (0);
}
结果:
这个例子用到的知识点比较多,主要是要熟悉RANSAC算法的特点
后续接着这个例子学习下点云索引提取子集 pcl::ExtractIndices extract;
以及学习下点云法向量估计 pcl::NormalEstimation<PointT, pcl::Normal> ne;
转载:https://blog.csdn.net/weixin_45377028/article/details/104599704
查看评论