non-blocking io 非阻塞 IO
1. 三大组件
1.1 Channel & Buffer
channel 有一点类似于 stream,它就是读写数据的双向通道,可以从 channel 将数据读入 buffer,也可以将 buffer 的数据写入 channel,而之前的 stream 要么是输入,要么是输出,channel 比 stream 更为底层
常见的 Channel 有
- FileChannel
- DatagramChannel
- SocketChannel
- ServerSocketChannel
buffer 则用来缓冲读写数据,常见的 buffer 有
- ByteBuffer 
  - MappedByteBuffer
- DirectByteBuffer
- HeapByteBuffer
 
- ShortBuffer
- IntBuffer
- LongBuffer
- FloatBuffer
- DoubleBuffer
- CharBuffer
1.2 Selector
selector 单从字面意思不好理解,需要结合服务器的设计演化来理解它的用途
多线程版设计
⚠️ 多线程版缺点
- 内存占用高
- 线程上下文切换成本高
- 只适合连接数少的场景
线程池版设计
⚠️ 线程池版缺点
- 阻塞模式下,线程仅能处理一个 socket 连接
- 仅适合短连接场景
selector 版设计
selector 的作用就是配合一个线程来管理多个 channel,获取这些 channel 上发生的事件,这些 channel 工作在非阻塞模式下,不会让线程吊死在一个 channel 上。适合连接数特别多,但流量低的场景(low traffic)
调用 selector 的 select() 会阻塞直到 channel 发生了读写就绪事件,这些事件发生,select 方法就会返回这些事件交给 thread 来处理
2. ByteBuffer
有一普通文本文件 test.txt,内容为
123abc
使用 FileChannel 来读取文件内容
RandomAccessFile :RandomAccessFile的唯一父类是Object,与其他流父类不同。是用来访问那些保存数据记录的文件的,这样你就可以用seek( )方法来访问记录,并进行读写了。这些记录的大小不必相同;但是其大小和位置必须是可知的。
package com.ossa.web3.nio;
import lombok.extern.slf4j.Slf4j;
import java.io.IOException;
import java.io.RandomAccessFile;
import java.nio.ByteBuffer;
import java.nio.channels.FileChannel;
@Slf4j
public class NIOTest {
   
    public static void main(String[] args) {
   
        // 读取文件
        try (RandomAccessFile randomAccessFile =
                     new RandomAccessFile("C:\\Users\\issa\\IdeaProjects\\ossa-web3\\src\\main\\resources\\test.txt", "rw")) {
   
            // 获取FileChannel
            FileChannel channel = randomAccessFile.getChannel();
            // 创建ByteBuffer
            ByteBuffer byteBuffer = ByteBuffer.allocate(4);
            while (true) {
   
                // 将数据写入byteBuffer,并返回写入字节的长度
                int len = channel.read(byteBuffer);
                // 如果长度为-1,说明文件中都写入完成了
                if (len == -1) {
   
                    log.debug("文件读取完毕");
                    break;
                }
                log.debug("写入的字节数为:{}", len);
                // 切换读模式
                byteBuffer.flip();
                while (byteBuffer.hasRemaining()) {
   
                    log.debug("读到的字符为:{}", (char)byteBuffer.get());
                }
                // 切换写模式
                byteBuffer.clear();
            }
        } catch (IOException e) {
   
            throw new RuntimeException(e);
        }
    }
}
 输出
13:37:00.205 [main] DEBUG com.ossa.web3.nio.NIOTest - 写入的字节数为:4
13:37:01.063 [main] DEBUG com.ossa.web3.nio.NIOTest - 读到的字符为:1
13:37:01.509 [main] DEBUG com.ossa.web3.nio.NIOTest - 读到的字符为:2
13:37:06.467 [main] DEBUG com.ossa.web3.nio.NIOTest - 读到的字符为:3
13:37:07.260 [main] DEBUG com.ossa.web3.nio.NIOTest - 读到的字符为:a
13:37:11.184 [main] DEBUG com.ossa.web3.nio.NIOTest - 写入的字节数为:2
13:37:14.190 [main] DEBUG com.ossa.web3.nio.NIOTest - 读到的字符为:b
13:37:16.120 [main] DEBUG com.ossa.web3.nio.NIOTest - 读到的字符为:c
13:37:20.503 [main] DEBUG com.ossa.web3.nio.NIOTest - 文件读取完毕
2.1 ByteBuffer 正确使用姿势
- 向 buffer 写入数据,例如调用 channel.read(buffer)
- 调用 flip() 切换至读模式
- 从 buffer 读取数据,例如调用 buffer.get()
- 调用 clear() 或 compact() 切换至写模式
- 重复 1~4 步骤
2.2 ByteBuffer 结构
ByteBuffer 有以下重要属性
- capacity
- position
- limit
写模式下,position 是写入位置,limit 等于容量。
flip 动作发生后,position 切换为读取位置,limit 切换为读取限制。
clear 动作发生后,变为写模式
compact 方法,是把未读完的部分向前压缩,然后切换至写模式
💡 调试工具类
public class ByteBufferUtil {
   
    private static final char[] BYTE2CHAR = new char[256];
    private static final char[] HEXDUMP_TABLE = new char[256 * 4];
    private static final String[] HEXPADDING = new String[16];
    private static final String[] HEXDUMP_ROWPREFIXES = new String[65536 >>> 4];
    private static final String[] BYTE2HEX = new String[256];
    private static final String[] BYTEPADDING = new String[16];
    static {
   
        final char[] DIGITS = "0123456789abcdef".toCharArray();
        for (int i = 0; i < 256; i++) {
   
            HEXDUMP_TABLE[i << 1] = DIGITS[i >>> 4 & 0x0F];
            HEXDUMP_TABLE[(i << 1) + 1] = DIGITS[i & 0x0F];
        }
        int i;
        // Generate the lookup table for hex dump paddings
        for (i = 0; i < HEXPADDING.length; i++) {
   
            int padding = HEXPADDING.length - i;
            StringBuilder buf = new StringBuilder(padding * 3);
            for (int j = 0; j < padding; j++) {
   
                buf.append("   ");
            }
            HEXPADDING[i] = buf.toString();
        }
        // Generate the lookup table for the start-offset header in each row (up to 64KiB).
        for (i = 0; i < HEXDUMP_ROWPREFIXES.length; i++) {
   
            StringBuilder buf = new StringBuilder(12);
            buf.append(NEWLINE);
            buf.append(Long.toHexString(i << 4 & 0xFFFFFFFFL | 0x100000000L));
            buf.setCharAt(buf.length() - 9, '|');
            buf.append('|');
            HEXDUMP_ROWPREFIXES[i] = buf.toString();
        }
        // Generate the lookup table for byte-to-hex-dump conversion
        for (i = 0; i < BYTE2HEX.length; i++) {
   
            BYTE2HEX[i] = ' ' + StringUtil.byteToHexStringPadded(i);
        }
        // Generate the lookup table for byte dump paddings
        for (i = 0; i < BYTEPADDING.length; i++) {
   
            int padding = BYTEPADDING.length - i;
            StringBuilder buf = new StringBuilder(padding);
            for (int j = 0; j < padding; j++) {
   
                buf.append(' ');
            }
            BYTEPADDING[i] = buf.toString();
        }
        // Generate the lookup table for byte-to-char conversion
        for (i = 0; i < BYTE2CHAR.length; i++) {
   
            if (i <= 0x1f || i >= 0x7f) {
   
                BYTE2CHAR[i] = '.';
            } else {
   
                BYTE2CHAR[i] = (char) i;
            }
        }
    }
    /**
     * 打印所有内容
     * @param buffer
     */
    public static void debugAll(ByteBuffer buffer) {
   
        int oldlimit = buffer.limit();
        buffer.limit(buffer.capacity());
        StringBuilder origin = new StringBuilder(256);
        appendPrettyHexDump(origin, buffer, 0, buffer.capacity());
        System.out.println("+--------+-------------------- all ------------------------+----------------+");
        System.out.printf("position: [%d], limit: [%d]\n", buffer.position(), oldlimit);
        System.out.println(origin);
        buffer.limit(oldlimit);
    }
    /**
     * 打印可读取内容
     * @param buffer
     */
    public static void debugRead(ByteBuffer buffer) {
   
        StringBuilder builder = new StringBuilder(256);
        appendPrettyHexDump(builder, buffer, buffer.position(), buffer.limit() - buffer.position());
        System.out.println("+--------+-------------------- read -----------------------+----------------+");
        System.out.printf("position: [%d], limit: [%d]\n", buffer.position(), buffer.limit());
        System.out.println(builder);
    }
    private static void appendPrettyHexDump(StringBuilder dump, ByteBuffer buf, int offset, int length) {
   
        if (isOutOfBounds(offset, length, buf.capacity())) {
   
            throw new IndexOutOfBoundsException(
                    "expected: " + "0 <= offset(" + offset + ") <= offset + length(" + length
                            + ") <= " + "buf.capacity(" + buf.capacity() + ')');
        }
        if (length == 0) {
   
            return;
        }
        dump.append(
                "         +-------------------------------------------------+" +
                        NEWLINE + "         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |" +
                        NEWLINE + "+--------+-------------------------------------------------+----------------+");
        final int startIndex = offset;
        final int fullRows = length >>> 4;
        final int remainder = length & 0xF;
        // Dump the rows which have 16 bytes.
        for (int row = 0; row < fullRows; row++) {
   
            int rowStartIndex = (row << 4) + startIndex;
            // Per-row prefix.
            appendHexDumpRowPrefix(dump, row, rowStartIndex);
            // Hex dump
            int rowEndIndex = rowStartIndex + 16;
            for (int j = rowStartIndex; j < rowEndIndex; j++) {
   
                dump.append(BYTE2HEX[getUnsignedByte(buf, j)]);
            }
            dump.append(" |");
            // ASCII dump
            for (int j = rowStartIndex; j < rowEndIndex; j++) {
   
                dump.append(BYTE2CHAR[getUnsignedByte(buf, j)]);
            }
            dump.append('|');
        }
        // Dump the last row which has less than 16 bytes.
        if (remainder != 0) {
   
            int rowStartIndex = (fullRows << 4) + startIndex;
            appendHexDumpRowPrefix(dump, fullRows, rowStartIndex);
            // Hex dump
            int rowEndIndex = rowStartIndex + remainder;
            for (int j = rowStartIndex; j < rowEndIndex; j++) {
   
                dump.append(BYTE2HEX[getUnsignedByte(buf, j)]);
            }
            dump.append(HEXPADDING[remainder]);
            dump.append(" |");
            // Ascii dump
            for (int j = rowStartIndex; j < rowEndIndex; j++) {
   
                dump.append(BYTE2CHAR[getUnsignedByte(buf, j)]);
            }
            dump.append(BYTEPADDING[remainder]);
            dump.append('|');
        }
        dump.append(NEWLINE +
                "+--------+-------------------------------------------------+----------------+");
    }
    private static void appendHexDumpRowPrefix(StringBuilder dump, int row, int rowStartIndex) {
   
        if (row < HEXDUMP_ROWPREFIXES.length) {
   
            dump.append(HEXDUMP_ROWPREFIXES[row]);
        } else {
   
            dump.append(NEWLINE);
            dump.append(Long.toHexString(rowStartIndex & 0xFFFFFFFFL | 0x100000000L));
            dump.setCharAt(dump.length() - 9, '|');
            dump.append('|');
        }
    }
    public static short getUnsignedByte(ByteBuffer buffer, int index) {
   
        return (short) (buffer.get(index) & 0xFF);
    }
}
 2.3 ByteBuffer 常见方法
分配空间
可以使用 allocate 方法为 ByteBuffer 分配空间,其它 buffer 类也有该方法
Bytebuffer buf = ByteBuffer.allocate(16);
向 buffer 写入数据
有两种办法
- 调用 channel 的 read 方法
- 调用 buffer 自己的 put 方法
int readBytes = channel.read(buf);
和
buf.put((byte)127);
从 buffer 读取数据
同样有两种办法
- 调用 channel 的 write 方法
- 调用 buffer 自己的 get 方法
int writeBytes = channel.write(buf);
和
byte b = buf.get();
get 方法会让 position 读指针向后走,如果想重复读取数据
- 可以调用 rewind 方法将 position 重新置为 0
- 或者调用 get(int i) 方法获取索引 i 的内容,它不会移动读指针
mark 和 reset
mark 是在读取时,做一个标记,即使 position 改变,只要调用 reset 就能回到 mark 的位置
注意
rewind 和 flip 都会清除 mark 位置
字符串与 ByteBuffer 互转
ByteBuffer buffer1 = StandardCharsets.UTF_8.encode("你好");
ByteBuffer buffer2 = Charset.forName("utf-8").encode("你好");
debug(buffer1);
debug(buffer2);
CharBuffer buffer3 = StandardCharsets.UTF_8.decode(buffer1);
System.out.println(buffer3.getClass());
System.out.println(buffer3.toString());
输出
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| e4 bd a0 e5 a5 bd                               |......          |
+--------+-------------------------------------------------+----------------+
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| e4 bd a0 e5 a5 bd                               |......          |
+--------+-------------------------------------------------+----------------+
class java.nio.HeapCharBuffer
你好
⚠️ Buffer 的线程安全
Buffer 是非线程安全的
2.4 Scattering Reads
分散读取,有一个文本文件 3parts.txt
onetwothree
使用如下方式读取,可以将数据填充至多个 buffer
try (RandomAccessFile file = new RandomAccessFile("helloword/3parts.txt", "rw")) {
   
    FileChannel channel = file.getChannel();
    ByteBuffer a = ByteBuffer.allocate(3);
    ByteBuffer b = ByteBuffer.allocate(3);
    ByteBuffer c = ByteBuffer.allocate(5);
    channel.read(new ByteBuffer[]{
   a, b, c});
    a.flip();
    b.flip();
    c.flip();
    debug(a);
    debug(b);
    debug(c);
} catch (IOException e) {
   
    e.printStackTrace();
}
结果
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 6f 6e 65                                        |one             |
+--------+-------------------------------------------------+----------------+
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 74 77 6f                                        |two             |
+--------+-------------------------------------------------+----------------+
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 74 68 72 65 65                                  |three           |
+--------+-------------------------------------------------+----------------+
2.5 Gathering Writes
使用如下方式写入,可以将多个 buffer 的数据填充至 channel
try (RandomAccessFile file = new RandomAccessFile("C:\Users\issa\IdeaProjects\ossa-web3\src\main\resources\3parts.txt", "rw")) {
   
    FileChannel channel = file.getChannel();
    ByteBuffer d = ByteBuffer.allocate(4);
    ByteBuffer e = ByteBuffer.allocate(4);
    channel.position(11);
    d.put(new byte[]{
   'f', 'o', 'u', 'r'});
    e.put(new byte[]{
   'f', 'i', 'v', 'e'});
    d.flip();
    e.flip();
    debug(d);
    debug(e);
    channel.write(new ByteBuffer[]{
   d, e});
} catch (IOException e) {
   
    e.printStackTrace();
}
 输出
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 66 6f 75 72                                     |four            |
+--------+-------------------------------------------------+----------------+
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 66 69 76 65                                     |five            |
+--------+-------------------------------------------------+----------------+
文件内容
onetwothreefourfive
2.6 练习
网络上有多条数据发送给服务端,数据之间使用 \n 进行分隔
 但由于某种原因这些数据在接收时,被进行了重新组合,例如原始数据有3条为
- Hello,world\n
- I’m zhangsan\n
- How are you?\n
变成了下面的两个 byteBuffer (黏包,半包)
- Hello,world\nI’m zhangsan\nHo
- w are you?\n
现在要求你编写程序,将错乱的数据恢复成原始的按 \n 分隔的数据
public static void main(String[] args) {
   
    ByteBuffer source = ByteBuffer.allocate(32);
    //                     11            24
    source.put("Hello,world\nI'm zhangsan\nHo".getBytes());
    split(source);
    source.put("w are you?\nhaha!\n".getBytes());
    split(source);
}
private static void split(ByteBuffer source) {
   
    source.flip();
    int oldLimit = source.limit();
    for (int i = 0; i < oldLimit; i++) {
   
        if (source.get(i) == '\n') {
   
            System.out.println(i);
            ByteBuffer target = ByteBuffer.allocate(i + 1 - source.position());
            // 0 ~ limit
            source.limit(i + 1);
            target.put(source); // 从source 读,向 target 写
            debugAll(target);
            source.limit(oldLimit);
        }
    }
    source.compact();
}
 3. 文件编程
3.1 FileChannel
⚠️ FileChannel 工作模式
FileChannel 只能工作在阻塞模式下
获取
不能直接打开 FileChannel,必须通过 FileInputStream、FileOutputStream 或者 RandomAccessFile 来获取 FileChannel,它们都有 getChannel 方法
- 通过 FileInputStream 获取的 channel 只能读
- 通过 FileOutputStream 获取的 channel 只能写
- 通过 RandomAccessFile 是否能读写根据构造 RandomAccessFile 时的读写模式决定
读取
会从 channel 读取数据填充 ByteBuffer,返回值表示读到了多少字节,-1 表示到达了文件的末尾
int readBytes = channel.read(buffer);
写入
写入的正确姿势如下, SocketChannel
ByteBuffer buffer = ...;
buffer.put(...); // 存入数据
buffer.flip();   // 切换读模式
while(buffer.hasRemaining()) {
   
    channel.write(buffer);
}
在 while 中调用 channel.write 是因为 write 方法并不能保证一次将 buffer 中的内容全部写入 channel
关闭
channel 必须关闭,不过调用了 FileInputStream、FileOutputStream 或者 RandomAccessFile 的 close 方法会间接地调用 channel 的 close 方法
位置
获取当前位置
long pos = channel.position();
设置当前位置
long newPos = ...;
channel.position(newPos);
设置当前位置时,如果设置为文件的末尾
- 这时读取会返回 -1
- 这时写入,会追加内容,但要注意如果 position 超过了文件末尾,再写入时在新内容和原末尾之间会有空洞(00)
大小
使用 size 方法获取文件的大小
强制写入
操作系统出于性能的考虑,会将数据缓存,不是立刻写入磁盘。可以调用 force(true) 方法将文件内容和元数据(文件的权限等信息)立刻写入磁盘
3.2 两个 Channel 传输数据
String FROM = "helloword/data.txt";
String TO = "helloword/to.txt";
long start = System.nanoTime();
try (FileChannel from = new FileInputStream(FROM).getChannel();
     FileChannel to = new FileOutputStream(TO).getChannel();
    ) {
   
    from.transferTo(0, from.size(), to);
} catch (IOException e) {
   
    e.printStackTrace();
}
long end = System.nanoTime();
System.out.println("transferTo 用时:" + (end - start) / 1000_000.0);
输出
transferTo 用时:8.2011
超过 2g 大小的文件传输
public class TestFileChannelTransferTo {
   
    public static void main(String[] args) {
   
        try (
                FileChannel from = new FileInputStream("data.txt").getChannel();
                FileChannel to = new FileOutputStream("to.txt").getChannel();
        ) {
   
            // 效率高,底层会利用操作系统的零拷贝进行优化
            long size = from.size();
            // left 变量代表还剩余多少字节
            for (long left = size; left > 0; ) {
   
                System.out.println("position:" + (size - left) + " left:" + left);
                left -= from.transferTo((size - left), left, to);
            }
        } catch (IOException e) {
   
            e.printStackTrace();
        }
    }
}
 实际传输一个超大文件
position:0 left:7769948160
position:2147483647 left:5622464513
position:4294967294 left:3474980866
position:6442450941 left:1327497219
3.3 Path
jdk7 引入了 Path 和 Paths 类
- Path 用来表示文件路径
- Paths 是工具类,用来获取 Path 实例
Path source = Paths.get("1.txt"); // 相对路径 使用 user.dir 环境变量来定位 1.txt
Path source = Paths.get("d:\\1.txt"); // 绝对路径 代表了  d:\1.txt
Path source = Paths.get("d:/1.txt"); // 绝对路径 同样代表了  d:\1.txt
Path projects = Paths.get("d:\\data", "projects"); // 代表了  d:\data\projects
- .代表了当前路径
- ..代表了上一级路径
例如目录结构如下
d:
	|- data
		|- projects
			|- a
			|- b
代码
Path path = Paths.get("d:\\data\\projects\\a\\..\\b");
System.out.println(path);
System.out.println(path.normalize()); // 正常化路径
会输出
d:\data\projects\a\..\b
d:\data\projects\b
3.4 Files
检查文件是否存在
Path path = Paths.get("helloword/data.txt");
System.out.println(Files.exists(path));
创建一级目录
Path path = Paths.get("helloword/d1");
Files.createDirectory(path);
- 如果目录已存在,会抛异常 FileAlreadyExistsException
- 不能一次创建多级目录,否则会抛异常 NoSuchFileException
创建多级目录用
Path path = Paths.get("helloword/d1/d2");
Files.createDirectories(path);
拷贝文件
Path source = Paths.get("helloword/data.txt");
Path target = Paths.get("helloword/target.txt");
Files.copy(source, target);
- 如果文件已存在,会抛异常 FileAlreadyExistsException
如果希望用 source 覆盖掉 target,需要用 StandardCopyOption 来控制
Files.copy(source, target, StandardCopyOption.REPLACE_EXISTING);
移动文件
Path source = Paths.get("helloword/data.txt");
Path target = Paths.get("helloword/data.txt");
Files.move(source, target, StandardCopyOption.ATOMIC_MOVE);
- StandardCopyOption.ATOMIC_MOVE 保证文件移动的原子性
删除文件
Path target = Paths.get("helloword/target.txt");
Files.delete(target);
- 如果文件不存在,会抛异常 NoSuchFileException
删除目录
Path target = Paths.get("helloword/d1");
Files.delete(target);
- 如果目录还有内容,会抛异常 DirectoryNotEmptyException
遍历目录文件
public static void main(String[] args) throws IOException {
   
    Path path = Paths.get("C:\\Program Files\\Java\\jdk1.8.0_91");
    AtomicInteger dirCount = new AtomicInteger();
    AtomicInteger fileCount = new AtomicInteger();
    Files.walkFileTree(path, new SimpleFileVisitor<Path>(){
   
        @Override
        public FileVisitResult preVisitDirectory(Path dir, BasicFileAttributes attrs) 
            throws IOException {
   
            System.out.println(dir);
            dirCount.incrementAndGet();
            return super.preVisitDirectory(dir, attrs);
        }
        @Override
        public FileVisitResult visitFile(Path file, BasicFileAttributes attrs) 
            throws IOException {
   
            System.out.println(file);
            fileCount.incrementAndGet();
            return super.visitFile(file, attrs);
        }
    });
    System.out.println(dirCount); // 133
    System.out.println(fileCount); // 1479
}
 统计 jar 的数目
Path path = Paths.get("C:\\Program Files\\Java\\jdk1.8.0_91");
AtomicInteger fileCount = new AtomicInteger();
Files.walkFileTree(path, new SimpleFileVisitor<Path>(){
   
    @Override
    public FileVisitResult visitFile(Path file, BasicFileAttributes attrs) 
        throws IOException {
   
        if (file.toFile().getName().endsWith(".jar")) {
   
            fileCount.incrementAndGet();
        }
        return super.visitFile(file, attrs);
    }
});
System.out.println(fileCount); // 724
删除多级目录
Path path = Paths.get("d:\\a");
Files.walkFileTree(path, new SimpleFileVisitor<Path>(){
   
    @Override
    public FileVisitResult visitFile(Path file, BasicFileAttributes attrs) 
        throws IOException {
   
        Files.delete(file);
        return super.visitFile(file, attrs);
    }
    @Override
    public FileVisitResult postVisitDirectory(Path dir, IOException exc) 
        throws IOException {
   
        Files.delete(dir);
        return super.postVisitDirectory(dir, exc);
    }
});
 ⚠️ 删除很危险
删除是危险操作,确保要递归删除的文件夹没有重要内容
拷贝多级目录
long start = System.currentTimeMillis();
String source = "D:\\Snipaste-1.16.2-x64";
String target = "D:\\Snipaste-1.16.2-x64aaa";
Files.walk(Paths.get(source)).forEach(path -> {
   
    try {
   
        String targetName = path.toString().replace(source, target);
        // 是目录
        if (Files.isDirectory(path)) {
   
            Files.createDirectory(Paths.get(targetName));
        }
        // 是普通文件
        else if (Files.isRegularFile(path)) {
   
            Files.copy(path, Paths.get(targetName));
        }
    } catch (IOException e) {
   
        e.printStackTrace();
    }
});
long end = System.currentTimeMillis();
System.out.println(end - start);
 4. 网络编程
4.1 非阻塞 vs 阻塞
阻塞
- 阻塞模式下,相关方法都会导致线程暂停 
  - ServerSocketChannel.accept 会在没有连接建立时让线程暂停
- SocketChannel.read 会在没有数据可读时让线程暂停
- 阻塞的表现其实就是线程暂停了,暂停期间不会占用 cpu,但线程相当于闲置
 
- 单线程下,阻塞方法之间相互影响,几乎不能正常工作,需要多线程支持
- 但多线程下,有新的问题,体现在以下方面 
  - 32 位 jvm 一个线程 320k,64 位 jvm 一个线程 1024k,如果连接数过多,必然导致 OOM,并且线程太多,反而会因为频繁上下文切换导致性能降低
- 可以采用线程池技术来减少线程数和线程上下文切换,但治标不治本,如果有很多连接建立,但长时间 inactive,会阻塞线程池中所有线程,因此不适合长连接,只适合短连接
 
服务器端
// 使用 nio 来理解阻塞模式, 单线程
// 0. ByteBuffer
ByteBuffer buffer = ByteBuffer.allocate(16);
// 1. 创建了服务器
ServerSocketChannel ssc = ServerSocketChannel.open();
// 2. 绑定监听端口
ssc.bind(new InetSocketAddress(8080));
// 3. 连接集合
List<SocketChannel> channels = new ArrayList<>();
while (true) {
   
    // 4. accept 建立与客户端连接, SocketChannel 用来与客户端之间通信
    log.debug("connecting...");
    SocketChannel sc = ssc.accept(); // 阻塞方法,线程停止运行
    log.debug("connected... {}", sc);
    channels.add(sc);
    for (SocketChannel channel : channels) {
   
        // 5. 接收客户端发送的数据
        log.debug("before read... {}", channel);
        channel.read(buffer); // 阻塞方法,线程停止运行
        buffer.flip();
        debugRead(buffer);
        buffer.clear();
        log.debug("after read...{}", channel);
    }
}
 客户端
SocketChannel sc = SocketChannel.open();
sc.connect(new InetSocketAddress("localhost", 8080));
System.out.println("waiting...");
非阻塞
- 非阻塞模式下,相关方法都会不会让线程暂停 
  - 在 ServerSocketChannel.accept 在没有连接建立时,会返回 null,继续运行
- SocketChannel.read 在没有数据可读时,会返回 0,但线程不必阻塞,可以去执行其它 SocketChannel 的 read 或是去执行 ServerSocketChannel.accept
- 写数据时,线程只是等待数据写入 Channel 即可,无需等 Channel 通过网络把数据发送出去
 
- 但非阻塞模式下,即使没有连接建立,和可读数据,线程仍然在不断运行,白白浪费了 cpu
- 数据复制过程中,线程实际还是阻塞的(AIO 改进的地方)
服务器端,客户端代码不变
// 使用 nio 来理解非阻塞模式, 单线程
// 0. ByteBuffer
ByteBuffer buffer = ByteBuffer.allocate(16);
// 1. 创建了服务器
ServerSocketChannel ssc = ServerSocketChannel.open();
ssc.configureBlocking(false); // 非阻塞模式
// 2. 绑定监听端口
ssc.bind(new InetSocketAddress(8080));
// 3. 连接集合
List<SocketChannel> channels = new ArrayList<>();
while (true) {
   
    // 4. accept 建立与客户端连接, SocketChannel 用来与客户端之间通信
    SocketChannel sc = ssc.accept(); // 非阻塞,线程还会继续运行,如果没有连接建立,但sc是null
    if (sc != null) {
   
        log.debug("connected... {}", sc);
        sc.configureBlocking(false); // 非阻塞模式
        channels.add(sc);
    }
    for (SocketChannel channel : channels) {
   
        // 5. 接收客户端发送的数据
        int read = channel.read(buffer);// 非阻塞,线程仍然会继续运行,如果没有读到数据,read 返回 0
        if (read > 0) {
   
            buffer.flip();
            debugRead(buffer);
            buffer.clear();
            log.debug("after read...{}", channel);
        }
    }
}
 多路复用
单线程可以配合 Selector 完成对多个 Channel 可读写事件的监控,这称之为多路复用
- 多路复用仅针对网络 IO、普通文件 IO 没法利用多路复用
- 如果不用 Selector 的非阻塞模式,线程大部分时间都在做无用功,而 Selector 能够保证 
  - 有可连接事件时才去连接
- 有可读事件才去读取
- 有可写事件才去写入 
    - 限于网络传输能力,Channel 未必时时可写,一旦 Channel 可写,会触发 Selector 的可写事件
 
 
附:多路复用、Redis 多路复用、Redis IO 多路复用机制
4.2 Selector
好处
- 一个线程配合 selector 就可以监控多个 channel 的事件,事件发生线程才去处理。避免非阻塞模式下所做无用功
- 让这个线程能够被充分利用
- 节约了线程的数量
- 减少了线程上下文切换
创建
Selector selector = Selector.open();
绑定 Channel 事件
也称之为注册事件,绑定的事件 selector 才会关心
channel.configureBlocking(false);
SelectionKey key = channel.register(selector, 绑定事件);
- channel 必须工作在非阻塞模式
- FileChannel 没有非阻塞模式,因此不能配合 selector 一起使用
- 绑定的事件类型可以有 
  - connect - 客户端连接成功时触发
- accept - 服务器端成功接受连接时触发
- read - 数据可读入时触发,有因为接收能力弱,数据暂不能读入的情况
- write - 数据可写出时触发,有因为发送能力弱,数据暂不能写出的情况
 
监听 Channel 事件
可以通过下面三种方法来监听是否有事件发生,方法的返回值代表有多少 channel 发生了事件
方法1,阻塞直到绑定事件发生
int count = selector.select();
方法2,阻塞直到绑定事件发生,或是超时(时间单位为 ms)
int count = selector.select(long timeout);
方法3,不会阻塞,也就是不管有没有事件,立刻返回,自己根据返回值检查是否有事件
int count = selector.selectNow();
💡 select 何时不阻塞
- 事件发生时
- 客户端发起连接请求,会触发 accept 事件
- 客户端发送数据过来,客户端正常、异常关闭时,都会触发 read 事件,另外如果发送的数据大于 buffer 缓冲区,会触发多次读取事件
- channel 可写,会触发 write 事件
- 在 linux 下 nio bug 发生时
- 调用 selector.wakeup()
- 调用 selector.close()
- selector 所在线程 interrupt
4.3 处理 accept 事件
客户端代码为
public class Client {
   
    public static void main(String[] args) {
   
        try (Socket socket = new Socket("localhost", 8080)) {
   
            System.out.println(socket);
            socket.getOutputStream().write("world".getBytes());
            System.in.read();
        } catch (IOException e) {
   
            e.printStackTrace();
        }
    }
}
服务器端代码为
@Slf4j
public class ChannelDemo6 {
   
    public static void main(String[] args) {
   
        try (ServerSocketChannel channel = ServerSocketChannel.open()) {
   
            channel.bind(new InetSocketAddress(8080));
            System.out.println(channel);
            Selector selector = Selector.open();
            channel.configureBlocking(false);
            channel.register(selector, SelectionKey.OP_ACCEPT);
            while (true) {
   
                int count = selector.select();
//                int count = selector.selectNow();
                log.debug("select count: {}", count);
//                if(count <= 0) {
   
//                    continue;
//                }
                // 获取所有事件
                Set<SelectionKey> keys = selector.selectedKeys();
                // 遍历所有事件,逐一处理
                Iterator<SelectionKey> iter = keys.iterator();
                while (iter.hasNext()) {
   
                    SelectionKey key = iter.next();
                    // 判断事件类型
                    if (key.isAcceptable()) {
   
                        ServerSocketChannel c = (ServerSocketChannel) key.channel();
                        // 必须处理
                        SocketChannel sc = c.accept();
                        log.debug("{}", sc);
                    }
                    // 处理完毕,必须将事件移除
                    iter.remove();
                }
            }
        } catch (IOException e) {
   
            e.printStackTrace();
        }
    }
}
 💡 事件发生后能否不处理
事件发生后,要么处理,要么取消(cancel),不能什么都不做,否则下次该事件仍会触发,这是因为 nio 底层使用的是水平触发
4.4 处理 read 事件
@Slf4j
public class ChannelDemo6 {
   
    public static void main(String[] args) {
   
        try (ServerSocketChannel channel = ServerSocketChannel.open()) {
   
            channel.bind(new InetSocketAddress(8080));
            System.out.println(channel);
            Selector selector = Selector.open();
            channel.configureBlocking(false);
            channel.register(selector, SelectionKey.OP_ACCEPT);
            while (true) {
   
                int count = selector.select();
//                int count = selector.selectNow();
                log.debug("select count: {}", count);
//                if(count <= 0) {
   
//                    continue;
//                }
                // 获取所有事件
                Set<SelectionKey> keys = selector.selectedKeys();
                // 遍历所有事件,逐一处理
                Iterator<SelectionKey> iter = keys.iterator();
                while (iter.hasNext()) {
   
                    SelectionKey key = iter.next();
                    // 判断事件类型
                    if (key.isAcceptable()) {
   
                        ServerSocketChannel c = (ServerSocketChannel) key.channel();
                        // 必须处理
                        SocketChannel sc = c.accept();
                        sc.configureBlocking(false);
                        sc.register(selector, SelectionKey.OP_READ);
                        log.debug("连接已建立: {}", sc);
                    } else if (key.isReadable()) {
   
                        SocketChannel sc = (SocketChannel) key.channel();
                        ByteBuffer buffer = ByteBuffer.allocate(128);
                        int read = sc.read(buffer);
                        if(read == -1) {
   
                            key.cancel();
                            sc.close();
                        } else {
   
                            buffer.flip();
                            debug(buffer);
                        }
                    }
                    // 处理完毕,必须将事件移除
                    iter.remove();
                }
            }
        } catch (IOException e) {
   
            e.printStackTrace();
        }
    }
}
 开启两个客户端,修改一下发送文字,输出
sun.nio.ch.ServerSocketChannelImpl[/0:0:0:0:0:0:0:0:8080]
21:16:39 [DEBUG] [main] c.i.n.ChannelDemo6 - select count: 1
21:16:39 [DEBUG] [main] c.i.n.ChannelDemo6 - 连接已建立: java.nio.channels.SocketChannel[connected local=/127.0.0.1:8080 remote=/127.0.0.1:60367]
21:16:39 [DEBUG] [main] c.i.n.ChannelDemo6 - select count: 1
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 68 65 6c 6c 6f                                  |hello           |
+--------+-------------------------------------------------+----------------+
21:16:59 [DEBUG] [main] c.i.n.ChannelDemo6 - select count: 1
21:16:59 [DEBUG] [main] c.i.n.ChannelDemo6 - 连接已建立: java.nio.channels.SocketChannel[connected local=/127.0.0.1:8080 remote=/127.0.0.1:60378]
21:16:59 [DEBUG] [main] c.i.n.ChannelDemo6 - select count: 1
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 77 6f 72 6c 64                                  |world           |
+--------+-------------------------------------------------+----------------+
 💡 为何要 iter.remove()
因为 select 在事件发生后,就会将相关的 key 放入 selectedKeys 集合,但不会在处理完后从 selectedKeys 集合中移除,需要我们自己编码删除。例如
- 第一次触发了 ssckey 上的 accept 事件,没有移除 ssckey
- 第二次触发了 sckey 上的 read 事件,但这时 selectedKeys 中还有上次的 ssckey ,在处理时因为没有真正的 serverSocket 连上了,就会导致空指针异常
💡 cancel 的作用
cancel 会取消注册在 selector 上的 channel,并从 keys 集合中删除 key 后续不会再监听事件
⚠️ 不处理边界的问题
以前有同学写过这样的代码,思考注释中两个问题,以 bio 为例,其实 nio 道理是一样的
public class Server {
   
    public static void main(String[] args) throws IOException {
   
        ServerSocket ss=new ServerSocket(9000);
        while (true) {
   
            Socket s = ss.accept();
            InputStream in = s.getInputStream();
            // 这里这么写,有没有问题
            byte[] arr = new byte[4];
            while(true) {
   
                int read = in.read(arr);
                // 这里这么写,有没有问题
                if(read == -1) {
   
                    break;
                }
                System.out.println(new String(arr, 0, read));
            }
        }
    }
}
 客户端
public class Client {
   
    public static void main(String[] args) throws IOException {
   
        Socket max = new Socket("localhost", 9000);
        OutputStream out = max.getOutputStream();
        out.write("hello".getBytes());
        out.write("world".getBytes());
        out.write("你好".getBytes());
        max.close();
    }
}
输出
hell
owor
ld�
�好
为什么?
处理消息的边界
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wqNOiULY-1676867567932)(img/0023.png)]
- 一种思路是固定消息长度,数据包大小一样,服务器按预定长度读取,缺点是浪费带宽
- 另一种思路是按分隔符拆分,缺点是效率低
- TLV 格式,即 Type 类型、Length 长度、Value 数据,类型和长度已知的情况下,就可以方便获取消息大小,分配合适的 buffer,缺点是 buffer 需要提前分配,如果内容过大,则影响 server 吞吐量 
  - Http 1.1 是 TLV 格式
- Http 2.0 是 LTV 格式
 
服务器端
private static void split(ByteBuffer source) {
   
    source.flip();
    for (int i = 0; i < source.limit(); i++) {
   
        // 找到一条完整消息
        if (source.get(i) == '\n') {
   
            int length = i + 1 - source.position();
            // 把这条完整消息存入新的 ByteBuffer
            ByteBuffer target = ByteBuffer.allocate(length);
            // 从 source 读,向 target 写
            for (int j = 0; j < length; j++) {
   
                target.put(source.get());
            }
            debugAll(target);
        }
    }
    source.compact(); // 0123456789abcdef  position 16 limit 16
}
public static void main(String[] args) throws IOException {
   
    // 1. 创建 selector, 管理多个 channel
    Selector selector = Selector.open();
    ServerSocketChannel ssc = ServerSocketChannel.open();
    ssc.configureBlocking(false);
    // 2. 建立 selector 和 channel 的联系(注册)
    // SelectionKey 就是将来事件发生后,通过它可以知道事件和哪个channel的事件
    SelectionKey sscKey = ssc.register(selector, 0, null);
    // key 只关注 accept 事件
    sscKey.interestOps(SelectionKey.OP_ACCEPT);
    log.debug("sscKey:{}", sscKey);
    ssc.bind(new InetSocketAddress(8080));
    while (true) {
   
        // 3. select 方法, 没有事件发生,线程阻塞,有事件,线程才会恢复运行
        // select 在事件未处理时,它不会阻塞, 事件发生后要么处理,要么取消,不能置之不理
        selector.select();
        // 4. 处理事件, selectedKeys 内部包含了所有发生的事件
        Iterator<SelectionKey> iter = selector.selectedKeys().iterator(); // accept, read
        while (iter.hasNext()) {
   
            SelectionKey key = iter.next();
            // 处理key 时,要从 selectedKeys 集合中删除,否则下次处理就会有问题
            iter.remove();
            log.debug("key: {}", key);
            // 5. 区分事件类型
            if (key.isAcceptable()) {
    // 如果是 accept
                ServerSocketChannel channel = (ServerSocketChannel) key.channel();
                SocketChannel sc = channel.accept();
                sc.configureBlocking(false);
                ByteBuffer buffer = ByteBuffer.allocate(16); // attachment
                // 将一个 byteBuffer 作为附件关联到 selectionKey 上
                SelectionKey scKey = sc.register(selector, 0, buffer);
                scKey.interestOps(SelectionKey.OP_READ);
                log.debug("{}", sc);
                log.debug("scKey:{}", scKey);
            } else if (key.isReadable()) {
    // 如果是 read
                try {
   
                    SocketChannel channel = (SocketChannel) key.channel(); // 拿到触发事件的channel
                    // 获取 selectionKey 上关联的附件
                    ByteBuffer buffer = (ByteBuffer) key.attachment();
                    int read = channel.read(buffer); // 如果是正常断开,read 的方法的返回值是 -1
                    if(read == -1) {
   
                        key.cancel();
                    } else {
   
                        split(buffer);
                        // 需要扩容
                        if (buffer.position() == buffer.limit()) {
   
                            ByteBuffer newBuffer = ByteBuffer.allocate(buffer.capacity() * 2);
                            buffer.flip();
                            newBuffer.put(buffer); // 0123456789abcdef3333\n
                            key.attach(newBuffer);
                        }
                    }
                } catch (IOException e) {
   
                    e.printStackTrace();
                    key.cancel();  // 因为客户端断开了,因此需要将 key 取消(从 selector 的 keys 集合中真正删除 key)
                }
            }
        }
    }
}
 客户端
SocketChannel sc = SocketChannel.open();
sc.connect(new InetSocketAddress("localhost", 8080));
SocketAddress address = sc.getLocalAddress();
// sc.write(Charset.defaultCharset().encode("hello\nworld\n"));
sc.write(Charset.defaultCharset().encode("0123\n456789abcdef"));
sc.write(Charset.defaultCharset().encode("0123456789abcdef3333\n"));
System.in.read();
ByteBuffer 大小分配
- 每个 channel 都需要记录可能被切分的消息,因为 ByteBuffer 不能被多个 channel 共同使用,因此需要为每个 channel 维护一个独立的 ByteBuffer
- ByteBuffer 不能太大,比如一个 ByteBuffer 1Mb 的话,要支持百万连接就要 1Tb 内存,因此需要设计大小可变的 ByteBuffer 
  - 一种思路是首先分配一个较小的 buffer,例如 4k,如果发现数据不够,再分配 8k 的 buffer,将 4k buffer 内容拷贝至 8k buffer,优点是消息连续容易处理,缺点是数据拷贝耗费性能,参考实现 http://tutorials.jenkov.com/java-performance/resizable-array.html
- 另一种思路是用多个数组组成 buffer,一个数组不够,把多出来的内容写入新的数组,与前面的区别是消息存储不连续解析复杂,优点是避免了拷贝引起的性能损耗
 
- 一种思路是首先分配一个较小的 buffer,例如 4k,如果发现数据不够,再分配 8k 的 buffer,将 4k buffer 内容拷贝至 8k buffer,优点是消息连续容易处理,缺点是数据拷贝耗费性能,参考实现 
4.5 处理 write 事件
一次无法写完例子
- 非阻塞模式下,无法保证把 buffer 中所有数据都写入 channel,因此需要追踪 write 方法的返回值(代表实际写入字节数)
- 用 selector 监听所有 channel 的可写事件,每个 channel 都需要一个 key 来跟踪 buffer,但这样又会导致占用内存过多,就有两阶段策略 
  - 当消息处理器第一次写入消息时,才将 channel 注册到 selector 上
- selector 检查 channel 上的可写事件,如果所有的数据写完了,就取消 channel 的注册
- 如果不取消,会每次可写均会触发 write 事件
 
public class WriteServer {
   
    public static void main(String[] args) throws IOException {
   
        ServerSocketChannel ssc = ServerSocketChannel.open();
        ssc.configureBlocking(false);
        ssc.bind(new InetSocketAddress(8080));
        Selector selector = Selector.open();
        ssc.register(selector, SelectionKey.OP_ACCEPT);
        while(true) {
   
            selector.select();
            Iterator<SelectionKey> iter = selector.selectedKeys().iterator();
            while (iter.hasNext()) {
   
                SelectionKey key = iter.next();
                iter.remove();
                if (key.isAcceptable()) {
   
                    SocketChannel sc = ssc.accept();
                    sc.configureBlocking(false);
                    SelectionKey sckey = sc.register(selector, SelectionKey.OP_READ);
                    // 1. 向客户端发送内容
                    StringBuilder sb = new StringBuilder();
                    for (int i = 0; i < 3000000; i++) {
   
                        sb.append("a");
                    }
                    ByteBuffer buffer = Charset.defaultCharset().encode(sb.toString());
                    int write = sc.write(buffer);
                    // 3. write 表示实际写了多少字节
                    System.out.println("实际写入字节:" + write);
                    // 4. 如果有剩余未读字节,才需要关注写事件
                    if (buffer.hasRemaining()) {
   
                        // read 1  write 4
                        // 在原有关注事件的基础上,多关注 写事件
                        sckey.interestOps(sckey.interestOps() + SelectionKey.OP_WRITE);
                        // 把 buffer 作为附件加入 sckey
                        sckey.attach(buffer);
                    }
                } else if (key.isWritable()) {
   
                    ByteBuffer buffer = (ByteBuffer) key.attachment();
                    SocketChannel sc = (SocketChannel) key.channel();
                    int write = sc.write(buffer);
                    System.out.println("实际写入字节:" + write);
                    if (!buffer.hasRemaining()) {
    // 写完了
                        key.interestOps(key.interestOps() - SelectionKey.OP_WRITE);
                        key.attach(null);
                    }
                }
            }
        }
    }
}
 客户端
public class WriteClient {
   
    public static void main(String[] args) throws IOException {
   
        Selector selector = Selector.open();
        SocketChannel sc = SocketChannel.open();
        sc.configureBlocking(false);
        sc.register(selector, SelectionKey.OP_CONNECT | SelectionKey.OP_READ);
        sc.connect(new InetSocketAddress("localhost", 8080));
        int count = 0;
        while (true) {
   
            selector.select();
            Iterator<SelectionKey> iter = selector.selectedKeys().iterator();
            while (iter.hasNext()) {
   
                SelectionKey key = iter.next();
                iter.remove();
                if (key.isConnectable()) {
   
                    System.out.println(sc.finishConnect());
                } else if (key.isReadable()) {
   
                    ByteBuffer buffer = ByteBuffer.allocate(1024 * 1024);
                    count += sc.read(buffer);
                    buffer.clear();
                    System.out.println(count);
                }
            }
        }
    }
}
 💡 write 为何要取消
只要向 channel 发送数据时,socket 缓冲可写,这个事件会频繁触发,因此应当只在 socket 缓冲区写不下时再关注可写事件,数据写完之后再取消关注
4.6 更进一步
💡 利用多线程优化
现在都是多核 cpu,设计时要充分考虑别让 cpu 的力量被白白浪费
前面的代码只有一个选择器,没有充分利用多核 cpu,如何改进呢?
分两组选择器
- 单线程配一个选择器,专门处理 accept 事件
- 创建 cpu 核心数的线程,每个线程配一个选择器,轮流处理 read 事件
public class ChannelDemo7 {
   
    public static void main(String[] args) throws IOException {
   
        new BossEventLoop().register();
    }
    @Slf4j
    static class BossEventLoop implements Runnable {
   
        private Selector boss;
        private WorkerEventLoop[] workers;
        private volatile boolean start = false;
        AtomicInteger index = new AtomicInteger();
        public void register() throws IOException {
   
            if (!start) {
   
                ServerSocketChannel ssc = ServerSocketChannel.open();
                ssc.bind(new InetSocketAddress(8080));
                ssc.configureBlocking(false);
                boss = Selector.open();
                SelectionKey ssckey = ssc.register(boss, 0, null);
                ssckey.interestOps(SelectionKey.OP_ACCEPT);
                workers = initEventLoops();
                new Thread(this, "boss").start();
                log.debug("boss start...");
                start = true;
            }
        }
        public WorkerEventLoop[] initEventLoops() {
   
//        EventLoop[] eventLoops = new EventLoop[Runtime.getRuntime().availableProcessors()];
            WorkerEventLoop[] workerEventLoops = new WorkerEventLoop[2];
            for (int i = 0; i < workerEventLoops.length; i++) {
   
                workerEventLoops[i] = new WorkerEventLoop(i);
            }
            return workerEventLoops;
        }
        @Override
        public void run() {
   
            while (true) {
   
                try {
   
                    boss.select();
                    Iterator<SelectionKey> iter = boss.selectedKeys().iterator();
                    while (iter.hasNext()) {
   
                        SelectionKey key = iter.next();
                        iter.remove();
                        if (key.isAcceptable()) {
   
                            ServerSocketChannel c = (ServerSocketChannel) key.channel();
                            SocketChannel sc = c.accept();
                            sc.configureBlocking(false);
                            log.debug("{} connected", sc.getRemoteAddress());
                            workers[index.getAndIncrement() % workers.length].register(sc);
                        }
                    }
                } catch (IOException e) {
   
                    e.printStackTrace();
                }
            }
        }
    }
    @Slf4j
    static class WorkerEventLoop implements Runnable {
   
        private Selector worker;
        private volatile boolean start = false;
        private int index;
        private final ConcurrentLinkedQueue<Runnable> tasks = new ConcurrentLinkedQueue<>();
        public WorkerEventLoop(int index) {
   
            this.index = index;
        }
        public void register(SocketChannel sc) throws IOException {
   
            if (!start) {
   
                worker = Selector.open();
                new Thread(this, "worker-" + index).start();
                start = true;
            }
            tasks.add(() -> {
   
                try {
   
                    SelectionKey sckey = sc.register(worker, 0, null);
                    sckey.interestOps(SelectionKey.OP_READ);
                    worker.selectNow();
                } catch (IOException e) {
   
                    e.printStackTrace();
                }
            });
            worker.wakeup();
        }
        @Override
        public void run() {
   
            while (true) {
   
                try {
   
                    worker.select();
                    Runnable task = tasks.poll();
                    if (task != null) {
   
                        task.run();
                    }
                    Set<SelectionKey> keys = worker.selectedKeys();
                    Iterator<SelectionKey> iter = keys.iterator();
                    while (iter.hasNext()) {
   
                        SelectionKey key = iter.next();
                        if (key.isReadable()) {
   
                            SocketChannel sc = (SocketChannel) key.channel();
                            ByteBuffer buffer = ByteBuffer.allocate(128);
                            try {
   
                                int read = sc.read(buffer);
                                if (read == -1) {
   
                                    key.cancel();
                                    sc.close();
                                } else {
   
                                    buffer.flip();
                                    log.debug("{} message:", sc.getRemoteAddress());
                                    debugAll(buffer);
                                }
                            } catch (IOException e) {
   
                                e.printStackTrace();
                                key.cancel();
                                sc.close();
                            }
                        }
                        iter.remove();
                    }
                } catch (IOException e) {
   
                    e.printStackTrace();
                }
            }
        }
    }
}
 💡 如何拿到 cpu 个数
- Runtime.getRuntime().availableProcessors() 如果工作在 docker 容器下,因为容器不是物理隔离的,会拿到物理 cpu 个数,而不是容器申请时的个数
- 这个问题直到 jdk 10 才修复,使用 jvm 参数 UseContainerSupport 配置, 默认开启
4.7 UDP
- UDP 是无连接的,client 发送数据不会管 server 是否开启
- server 这边的 receive 方法会将接收到的数据存入 byte buffer,但如果数据报文超过 buffer 大小,多出来的数据会被默默抛弃
首先启动服务器端
public class UdpServer {
   
    public static void main(String[] args) {
   
        try (DatagramChannel channel = DatagramChannel.open()) {
   
            channel.socket().bind(new InetSocketAddress(9999));
            System.out.println("waiting...");
            ByteBuffer buffer = ByteBuffer.allocate(32);
            channel.receive(buffer);
            buffer.flip();
            debug(buffer);
        } catch (IOException e) {
   
            e.printStackTrace();
        }
    }
}
输出
waiting...
运行客户端
public class UdpClient {
   
    public static void main(String[] args) {
   
        try (DatagramChannel channel = DatagramChannel.open()) {
   
            ByteBuffer buffer = StandardCharsets.UTF_8.encode("hello");
            InetSocketAddress address = new InetSocketAddress("localhost", 9999);
            channel.send(buffer, address);
        } catch (Exception e) {
   
            e.printStackTrace();
        }
    }
}
接下来服务器端输出
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 68 65 6c 6c 6f                                  |hello           |
+--------+-------------------------------------------------+----------------+
5. NIO vs BIO
5.1 stream vs channel
- stream 不会自动缓冲数据,channel 会利用系统提供的发送缓冲区、接收缓冲区(更为底层)
- stream 仅支持阻塞 API,channel 同时支持阻塞、非阻塞 API,网络 channel 可配合 selector 实现多路复用
- 二者均为全双工,即读写可以同时进行
5.2 IO 模型
同步阻塞、同步非阻塞、同步多路复用、异步阻塞(没有此情况)、异步非阻塞
- 同步:线程自己去获取结果(一个线程)
- 异步:线程自己不去获取结果,而是由其它线程送结果(至少两个线程)
当调用一次 channel.read 或 stream.read 后,会切换至操作系统内核态来完成真正数据读取,而读取又分为两个阶段,分别为:
-  等待数据阶段 
-  复制数据阶段 
  
-  阻塞 IO 

- 非阻塞 IO

- 多路复用

-  信号驱动 
-  异步 IO 

- 阻塞 IO vs 多路复用


🔖 参考
UNIX 网络编程 - 卷 I
5.3 零拷贝
传统 IO 问题
传统的 IO 将一个文件通过 socket 写出
File f = new File("helloword/data.txt");
RandomAccessFile file = new RandomAccessFile(file, "r");
byte[] buf = new byte[(int)f.length()];
file.read(buf);
Socket socket = ...;
socket.getOutputStream().write(buf);
内部工作流程是这样的:

-  java 本身并不具备 IO 读写能力,因此 read 方法调用后,要从 java 程序的用户态切换至内核态,去调用操作系统(Kernel)的读能力,将数据读入内核缓冲区。这期间用户线程阻塞,操作系统使用 DMA(Direct Memory Access)来实现文件读,其间也不会使用 cpu DMA 也可以理解为硬件单元,用来解放 cpu 完成文件 IO 
-  从内核态切换回用户态,将数据从内核缓冲区读入用户缓冲区(即 byte[] buf),这期间 cpu 会参与拷贝,无法利用 DMA 
-  调用 write 方法,这时将数据从用户缓冲区(byte[] buf)写入 socket 缓冲区,cpu 会参与拷贝 
-  接下来要向网卡写数据,这项能力 java 又不具备,因此又得从用户态切换至内核态,调用操作系统的写能力,使用 DMA 将 socket 缓冲区的数据写入网卡,不会使用 cpu 
可以看到中间环节较多,java 的 IO 实际不是物理设备级别的读写,而是缓存的复制,底层的真正读写是操作系统来完成的
- 用户态与内核态的切换发生了 3 次,这个操作比较重量级
- 数据拷贝了共 4 次
NIO 优化
通过 DirectByteBuf
- ByteBuffer.allocate(10) HeapByteBuffer 使用的还是 java 内存
- ByteBuffer.allocateDirect(10) DirectByteBuffer 使用的是操作系统内存

大部分步骤与优化前相同,不再赘述。唯有一点:java 可以使用 DirectByteBuf 将堆外内存映射到 jvm 内存中来直接访问使用
- 这块内存不受 jvm 垃圾回收的影响,因此内存地址固定,有助于 IO 读写
- java 中的 DirectByteBuf 对象仅维护了此内存的虚引用,内存回收分成两步 
  - DirectByteBuf 对象被垃圾回收,将虚引用加入引用队列
- 通过专门线程访问引用队列,根据虚引用释放堆外内存
 
- 减少了一次数据拷贝,用户态与内核态的切换次数没有减少
进一步优化(底层采用了 linux 2.1 后提供的 sendFile 方法),java 中对应着两个 channel 调用 transferTo/transferFrom 方法拷贝数据

- java 调用 transferTo 方法后,要从 java 程序的用户态切换至内核态,使用 DMA将数据读入内核缓冲区,不会使用 cpu
- 数据从内核缓冲区传输到 socket 缓冲区,cpu 会参与拷贝
- 最后使用 DMA 将 socket 缓冲区的数据写入网卡,不会使用 cpu
可以看到
- 只发生了一次用户态与内核态的切换
- 数据拷贝了 3 次
进一步优化(linux 2.4)

- java 调用 transferTo 方法后,要从 java 程序的用户态切换至内核态,使用 DMA将数据读入内核缓冲区,不会使用 cpu
- 只会将一些 offset 和 length 信息拷入 socket 缓冲区,几乎无消耗
- 使用 DMA 将 内核缓冲区的数据写入网卡,不会使用 cpu
整个过程仅只发生了一次用户态与内核态的切换,数据拷贝了 2 次。所谓的【零拷贝】,并不是真正无拷贝,而是在不会拷贝重复数据到 jvm 内存中,零拷贝的优点有
- 更少的用户态与内核态的切换
- 不利用 cpu 计算,减少 cpu 缓存伪共享
- 零拷贝适合小文件传输
5.3 AIO
AIO 用来解决数据复制阶段的阻塞问题
- 同步意味着,在进行读写操作时,线程需要等待结果,还是相当于闲置
- 异步意味着,在进行读写操作时,线程不必等待结果,而是将来由操作系统来通过回调方式由另外的线程来获得结果
异步模型需要底层操作系统(Kernel)提供支持
- Windows 系统通过 IOCP 实现了真正的异步 IO
- Linux 系统异步 IO 在 2.6 版本引入,但其底层实现还是用多路复用模拟了异步 IO,性能没有优势
文件 AIO
先来看看 AsynchronousFileChannel
@Slf4j
public class AioDemo1 {
   
    public static void main(String[] args) throws IOException {
   
        try{
   
            AsynchronousFileChannel s = 
                AsynchronousFileChannel.open(
                	Paths.get("1.txt"), StandardOpenOption.READ);
            ByteBuffer buffer = ByteBuffer.allocate(2);
            log.debug("begin...");
            s.read(buffer, 0, null, new CompletionHandler<Integer, ByteBuffer>() {
   
                @Override
                public void completed(Integer result, ByteBuffer attachment) {
   
                    log.debug("read completed...{}", result);
                    buffer.flip();
                    debug(buffer);
                }
                @Override
                public void failed(Throwable exc, ByteBuffer attachment) {
   
                    log.debug("read failed...");
                }
            });
        } catch (IOException e) {
   
            e.printStackTrace();
        }
        log.debug("do other things...");
        System.in.read();
    }
}
 输出
13:44:56 [DEBUG] [main] c.i.aio.AioDemo1 - begin...
13:44:56 [DEBUG] [main] c.i.aio.AioDemo1 - do other things...
13:44:56 [DEBUG] [Thread-5] c.i.aio.AioDemo1 - read completed...2
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 61 0d                                           |a.              |
+--------+-------------------------------------------------+----------------+
可以看到
- 响应文件读取成功的是另一个线程 Thread-5
- 主线程并没有 IO 操作阻塞
💡 守护线程
默认文件 AIO 使用的线程都是守护线程,所以最后要执行 System.in.read() 以避免守护线程意外结束
网络 AIO
public class AioServer {
   
    public static void main(String[] args) throws IOException {
   
        AsynchronousServerSocketChannel ssc = AsynchronousServerSocketChannel.open();
        ssc.bind(new InetSocketAddress(8080));
        ssc.accept(null, new AcceptHandler(ssc));
        System.in.read();
    }
    private static void closeChannel(AsynchronousSocketChannel sc) {
   
        try {
   
            System.out.printf("[%s] %s close\n", Thread.currentThread().getName(), sc.getRemoteAddress());
            sc.close();
        } catch (IOException e) {
   
            e.printStackTrace();
        }
    }
    private static class ReadHandler implements CompletionHandler<Integer, ByteBuffer> {
   
        private final AsynchronousSocketChannel sc;
        public ReadHandler(AsynchronousSocketChannel sc) {
   
            this.sc = sc;
        }
        @Override
        public void completed(Integer result, ByteBuffer attachment) {
   
            try {
   
                if (result == -1) {
   
                    closeChannel(sc);
                    return;
                }
                System.out.printf("[%s] %s read\n", Thread.currentThread().getName(), sc.getRemoteAddress());
                attachment.flip();
                System.out.println(Charset.defaultCharset().decode(attachment));
                attachment.clear();
                // 处理完第一个 read 时,需要再次调用 read 方法来处理下一个 read 事件
                sc.read(attachment, attachment, this);
            } catch (IOException e) {
   
                e.printStackTrace();
            }
        }
        @Override
        public void failed(Throwable exc, ByteBuffer attachment) {
   
            closeChannel(sc);
            exc.printStackTrace();
        }
    }
    private static class WriteHandler implements CompletionHandler<Integer, ByteBuffer> {
   
        private final AsynchronousSocketChannel sc;
        private WriteHandler(AsynchronousSocketChannel sc) {
   
            this.sc = sc;
        }
        @Override
        public void completed(Integer result, ByteBuffer attachment) {
   
            // 如果作为附件的 buffer 还有内容,需要再次 write 写出剩余内容
            if (attachment.hasRemaining()) {
   
                sc.write(attachment);
            }
        }
        @Override
        public void failed(Throwable exc, ByteBuffer attachment) {
   
            exc.printStackTrace();
            closeChannel(sc);
        }
    }
    private static class AcceptHandler implements CompletionHandler<AsynchronousSocketChannel, Object> {
   
        private final AsynchronousServerSocketChannel ssc;
        public AcceptHandler(AsynchronousServerSocketChannel ssc) {
   
            this.ssc = ssc;
        }
        @Override
        public void completed(AsynchronousSocketChannel sc, Object attachment) {
   
            try {
   
                System.out.printf("[%s] %s connected\n", Thread.currentThread().getName(), sc.getRemoteAddress());
            } catch (IOException e) {
   
                e.printStackTrace();
            }
            ByteBuffer buffer = ByteBuffer.allocate(16);
            // 读事件由 ReadHandler 处理
            sc.read(buffer, buffer, new ReadHandler(sc));
            // 写事件由 WriteHandler 处理
            sc.write(Charset.defaultCharset().encode("server hello!"), ByteBuffer.allocate(16), new WriteHandler(sc));
            // 处理完第一个 accpet 时,需要再次调用 accept 方法来处理下一个 accept 事件
            ssc.accept(null, this);
        }
        @Override
        public void failed(Throwable exc, Object attachment) {
   
            exc.printStackTrace();
        }
    }
}
 转载:https://blog.csdn.net/CSDN_SAVIOR/article/details/129122044
 
					