神经网络包括卷积层,池化层,全连接层。一个最简单的神经元结构,假如有三个输入,都对应一个权重参数,然后通过权重加起来,经过一个激活函数,最后输出y。
CNN中独特的结构就是卷积层,就是一个卷积核然后根据步幅进行扫描运算,最后输出特征矩阵。卷积核的深度和输入特征矩阵的深度相同,而输出的特征矩阵深度和卷积核个数相同。如果加上偏移量bias的话,就在输出的特征矩阵进行相加减即可。
使用激活函数的目的是引用非线性因素,具备解决非线性的能力。主要有sigmoid激活函数和Relu激活函数。sigmoid激活函数饱和时梯度值非常小,当网络层较深时容易出现梯度消失。Relu激活函数,当反向传播过程中有一个非常大的梯度经过时,反向传播更新后可能导致权重分布中心小于零,该处的导数始终为零,反向传播无法更新权重,进入失活状态。
卷积后的矩阵大小计算公式为:
W代表图片大小,F是卷积核的大小,P是填充的像素数。S是步长。当卷积的时候越界的时候,可以用padding进行补0处理
池化层,我理解的就是个缩小矩阵,将特征图进行稀疏处理,减少运算量。可以进行取最大值池化,也可以取平均值池化。经过池化层,不改变深度,只改变高度和宽度,一般来说,poolsize和stride相同。
然后对于误差的计算,真是一个复杂的过程,还好计算机会帮我们计算的,推理过程比较麻烦。。。
反向传播的时候有一个交叉熵损失函数,对于多分类问题(softmax输出,所有的输出概率和为1),损失计算公式:
对于二分类问题(sigmoid输出,每个输出结点之间互不相干),计算公式如下:
Oi*是真实标签值,Oi为预测值。
反向传播的过程中权重会不断地更新,分批次进行求解,通常还需要一个优化器,比如SGD,Adam等,这些直接调用即可,使用优化器的目的就是使得网络更快的收敛。
为了深度理解反向传播过程,再完整推导一遍:
LeNet
LeNet基本结构就是一个5*5卷积层,padding为2,然后是2*2的池化层,步幅为2,再接一个5*5卷积层,再接一个2*2的池化层,步幅为2,最后是三个全连接层。
-
import torch.nn
as nn
-
import torch.nn.functional
as F
-
-
# 定义类,初始化函数,继承于nn.Module
-
class
LeNet(nn.Module):
-
def
__init__(
self):
-
# 解决调用父类函数时可能出现的一系列问题
-
super(LeNet, self).__init__()
-
# 定义卷积层
-
# 第一个参数是输入特征层的深度,16个卷积核,卷积核尺寸为5*5
-
self.conv1 = nn.Conv2d(
3,
16,
5)
-
-
# 池化层,池化核的大小2*2,步幅为2
-
self.pool1 = nn.MaxPool2d(
2,
2)
-
-
# 上一层是卷积核为16,所以输入深度应该是16。32个卷积核,卷积核尺寸为5*5
-
self.conv2 = nn.Conv2d(
16,
32,
5)
-
-
# 池化层
-
self.pool2 = nn.MaxPool2d(
2,
2)
-
-
# 三层全连接层
-
# 全连接层需要把特征矩阵展平,32 * 5 * 5就是展平操作,120是全连接层的结点个数
-
self.fc1 = nn.Linear(
32 *
5 *
5,
120)
-
self.fc2 = nn.Linear(
120,
84)
-
# 最后一层设置为10,根据训练集的类别个数来定义
-
self.fc3 = nn.Linear(
84,
10)
-
-
# 正向传播过程
-
def
forward(
self, x):
-
# 经过卷积之后的矩阵尺寸大小计算公式N=(W-F+2P)/S+1,输入图片大小W*W,F是卷积核的大小,padding的像素数p,s是步长
-
# 假如传入第一个卷积层input(3, 32, 32) output(16, 28, 28),输出深度为16,卷积后的矩阵大小为32*32
-
x = F.relu(self.conv1(x))
-
-
# 深度不变,高度宽度改变为原来的一半
-
# output(16, 14, 14)
-
x = self.pool1(x)
-
-
# relu激活函数
-
x = F.relu(self.conv2(x))
# output(32, 10, 10)
-
-
x = self.pool2(x)
# output(32, 5, 5)
-
-
# view代表展成一维向量,-1是第一个维度,是自动推理的
-
x = x.view(-
1,
32 *
5 *
5)
# output(32*5*5)
-
-
x = F.relu(self.fc1(x))
# output(120)
-
x = F.relu(self.fc2(x))
# output(84)
-
-
# 全连接层3没用激活函数,理论应该接一个激活函数,但是在计算交叉熵损失函数时,实现了一个softmax方法,这里就不用定义了
-
x = self.fc3(x)
# output(10)
-
return x
-
-
-
import torch
-
# batch为32,深度为3,高度32,宽度32
-
input = torch.rand([
32,
3,
32,
32])
-
# 实例化模型
-
model = LeNet()
-
# 打印模型
-
print(model)
-
# 前向传播
-
output = model(
input)
-
-
-
# nn.Conv2d
-
# def __init__(
-
# self,
-
# in_channels: int,//深度
-
# out_channels: int,//代表卷积核的个数,使用几个卷积核,生成深度多少维的特征矩阵
-
# kernel_size: _size_2_t,//代表卷积核的大小
-
# stride: _size_2_t = 1,//步距
-
# padding: Union[str, _size_2_t] = 0,//四周补零处理
-
# dilation: _size_2_t = 1,
-
# groups: int = 1,
-
# bias: bool = True,//偏置,默认是使用的
-
# padding_mode: str = 'zeros', # TODO: refine this type
-
# device=None,
-
# dtype=None
-
# ) -> None:
-
-
# MaxPool2d
-
# def __init__(
-
# self,
-
# in_channels: int,
-
# out_channels: int,
-
# kernel_size: _size_2_t,池化核的大小
-
# stride: _size_2_t = 1,步距
-
# padding: Union[str, _size_2_t] = 0,
-
# dilation: _size_2_t = 1,
-
# groups: int = 1,
-
# bias: bool = True,
-
# padding_mode: str = 'zeros', # TODO: refine this type
-
# device=None,
-
# dtype=None
-
# ) -> None:
AlexNet
AlexNet网络的结构还是有一点点复杂的,先是11*11的卷积层,步幅为4,然后3*3的池化层,卷积层,池化层,然后又接着3个卷积层,再接一个池化层,最后是三个全连接层。
AlexNet网络的优点在于,使用了ReLU激活函数,而不是传统的Sigmoid激活函数以及Tanh激活函数,在全连接层的前两层中使用了Dropout,进行随机失活神经元,减少过拟合,就是在正向传播的时候随机失活一部分神经元。
过拟合的原因往往是特征维度过多,模型假设过于复杂,参数多,训练数据少,噪声过多,过度的拟合了训练数据,而没有考虑泛化能力。
还有就是预测的时候记得别把图片路径写错就行了,写绝对路径记得写\\,不要写成\,这样怎么样都不会出错。
-
import torch.nn
as nn
-
import torch
-
-
class
AlexNet(nn.Module):
-
def
__init__(
self, num_classes=1000, init_weights=False):
-
super(AlexNet, self).__init__()
-
# 网络多时,可以定义nn.Sequential
-
self.features = nn.Sequential(
# 将一系列的层结构打包
-
nn.Conv2d(
3,
48, kernel_size=
11, stride=
4, padding=
2),
# input[3, 224, 224] output[48, 55, 55]
-
nn.ReLU(inplace=
True),
# 代表载入更大的模型
-
nn.MaxPool2d(kernel_size=
3, stride=
2),
# output[48, 27, 27]
-
nn.Conv2d(
48,
128, kernel_size=
5, padding=
2),
# output[128, 27, 27]
-
nn.ReLU(inplace=
True),
-
nn.MaxPool2d(kernel_size=
3, stride=
2),
# output[128, 13, 13]
-
nn.Conv2d(
128,
192, kernel_size=
3, padding=
1),
# output[192, 13, 13]
-
nn.ReLU(inplace=
True),
-
nn.Conv2d(
192,
192, kernel_size=
3, padding=
1),
# output[192, 13, 13]
-
nn.ReLU(inplace=
True),
-
nn.Conv2d(
192,
128, kernel_size=
3, padding=
1),
# output[128, 13, 13]
-
nn.ReLU(inplace=
True),
-
nn.MaxPool2d(kernel_size=
3, stride=
2),
# output[128, 6, 6]
-
)
-
self.classifier = nn.Sequential(
-
nn.Dropout(p=
0.5),
# p随机失活的比例
-
nn.Linear(
128 *
6 *
6,
2048),
-
nn.ReLU(inplace=
True),
-
nn.Dropout(p=
0.5),
-
nn.Linear(
2048,
2048),
# 第一个2048是上一层的输出,第二个是这一层的结点个数
-
nn.ReLU(inplace=
True),
-
nn.Linear(
2048, num_classes),
# num_classes:输出是数据集类别的个数
-
)
-
if init_weights:
-
self._initialize_weights()
-
-
def
forward(
self, x):
-
x = self.features(x)
-
x = torch.flatten(x, start_dim=
1)
# 展平
-
x = self.classifier(x)
# 传入全连接层
-
return x
-
-
def
_initialize_weights(
self):
-
for m
in self.modules():
# 迭代每一层结构
-
if
isinstance(m, nn.Conv2d):
-
nn.init.kaiming_normal_(m.weight, mode=
'fan_out', nonlinearity=
'relu')
-
if m.bias
is
not
None:
-
nn.init.constant_(m.bias,
0)
-
elif
isinstance(m, nn.Linear):
-
nn.init.normal_(m.weight,
0,
0.01)
-
nn.init.constant_(m.bias,
0)
VGG
VGG网络,算是一个替代的思想吧,比如可以堆叠两个3*3的卷积核替代5*5的卷积核,堆叠三个3*3的卷积核替代7*7的卷积核,也可以减少参数量。
以VGG-16为例,先是2个卷积层,每个有64个卷积核,再接池化层,然后接2个卷积层,128个卷积核,池化层,3个卷积层,256个卷积核,池化层,三个卷积层,512个卷积核,池化层,然后3个卷积层,512个卷积核,再接池化层,最后三个全连接层。这个网络还是比较大的,用GPU跑也得好久。
-
import torch.nn
as nn
-
import torch
-
-
class
VGG(nn.Module):
-
def
__init__(
self, features, num_classes=1000, init_weights=False):
-
super(VGG, self).__init__()
-
self.features = features
-
self.classifier = nn.Sequential(
-
nn.Linear(
512 *
7 *
7,
4096),
-
nn.ReLU(
True),
-
-
nn.Dropout(p=
0.5),
# 随机失活
-
nn.Linear(
4096,
4096),
-
nn.ReLU(
True),
-
-
nn.Dropout(p=
0.5),
-
nn.Linear(
4096, num_classes)
-
)
-
if init_weights:
-
self._initialize_weights()
-
-
def
forward(
self, x):
-
# N x 3 x 224 x 224
-
x = self.features(x)
-
# N x 512 x 7 x 7
-
x = torch.flatten(x, start_dim=
1)
# 展平处理
-
# N x 512*7*7
-
x = self.classifier(x)
-
return x
-
-
def
_initialize_weights(
self):
-
for m
in self.modules():
-
if
isinstance(m, nn.Conv2d):
-
# nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
-
nn.init.xavier_uniform_(m.weight)
-
if m.bias
is
not
None:
-
nn.init.constant_(m.bias,
0)
-
elif
isinstance(m, nn.Linear):
-
nn.init.xavier_uniform_(m.weight)
-
# nn.init.normal_(m.weight, 0, 0.01)
-
nn.init.constant_(m.bias,
0)
-
-
-
# make_features生成提取特征网络结构
-
def
make_features(
cfg: list):
# 配置列表
-
layers = []
# 存放创建的每一层结构
-
in_channels =
3
# 输入的是RGB彩色通道,所以是3
-
for v
in cfg:
-
if v ==
"M":
# 说明是池化层
-
layers += [nn.MaxPool2d(kernel_size=
2, stride=
2)]
-
else:
-
conv2d = nn.Conv2d(in_channels, v, kernel_size=
3, padding=
1)
-
layers += [conv2d, nn.ReLU(
True)]
-
in_channels = v
-
return nn.Sequential(*layers)
-
-
-
def
vgg(
model_name="vgg16", **kwargs):
-
assert model_name
in cfgs,
"Warning: model number {} not in cfgs dict!".
format(model_name)
-
cfg = cfgs[model_name]
-
-
model = VGG(make_features(cfg), **kwargs)
-
return model
GoogLeNet
GoogLeNet网络的优点在于,引入了Inception结构,使用1*1的卷积核进行降维以及映射处理,而且添加了两个辅助分类器帮助训练,丢弃了全连接层,使用平均池化层,GoogLeNet有三个输出层。
-
import torch.nn
as nn
-
import torch
-
import torch.nn.functional
as F
-
-
-
class
GoogLeNet(nn.Module):
-
def
__init__(
self, num_classes=1000, aux_logits=True, init_weights=False):
-
super(GoogLeNet, self).__init__()
-
self.aux_logits = aux_logits
-
-
self.conv1 = BasicConv2d(
3,
64, kernel_size=
7, stride=
2, padding=
3)
-
self.maxpool1 = nn.MaxPool2d(
3, stride=
2, ceil_mode=
True)
-
-
self.conv2 = BasicConv2d(
64,
64, kernel_size=
1)
-
self.conv3 = BasicConv2d(
64,
192, kernel_size=
3, padding=
1)
-
self.maxpool2 = nn.MaxPool2d(
3, stride=
2, ceil_mode=
True)
-
-
self.inception3a = Inception(
192,
64,
96,
128,
16,
32,
32)
-
self.inception3b = Inception(
256,
128,
128,
192,
32,
96,
64)
-
self.maxpool3 = nn.MaxPool2d(
3, stride=
2, ceil_mode=
True)
-
-
self.inception4a = Inception(
480,
192,
96,
208,
16,
48,
64)
-
self.inception4b = Inception(
512,
160,
112,
224,
24,
64,
64)
-
self.inception4c = Inception(
512,
128,
128,
256,
24,
64,
64)
-
self.inception4d = Inception(
512,
112,
144,
288,
32,
64,
64)
-
self.inception4e = Inception(
528,
256,
160,
320,
32,
128,
128)
-
self.maxpool4 = nn.MaxPool2d(
3, stride=
2, ceil_mode=
True)
-
-
self.inception5a = Inception(
832,
256,
160,
320,
32,
128,
128)
-
self.inception5b = Inception(
832,
384,
192,
384,
48,
128,
128)
-
-
if self.aux_logits:
-
self.aux1 = InceptionAux(
512, num_classes)
-
self.aux2 = InceptionAux(
528, num_classes)
-
-
self.avgpool = nn.AdaptiveAvgPool2d((
1,
1))
-
self.dropout = nn.Dropout(
0.4)
-
self.fc = nn.Linear(
1024, num_classes)
-
if init_weights:
-
self._initialize_weights()
-
-
def
forward(
self, x):
-
# N x 3 x 224 x 224
-
x = self.conv1(x)
-
# N x 64 x 112 x 112
-
x = self.maxpool1(x)
-
# N x 64 x 56 x 56
-
x = self.conv2(x)
-
# N x 64 x 56 x 56
-
x = self.conv3(x)
-
# N x 192 x 56 x 56
-
x = self.maxpool2(x)
-
-
# N x 192 x 28 x 28
-
x = self.inception3a(x)
-
# N x 256 x 28 x 28
-
x = self.inception3b(x)
-
# N x 480 x 28 x 28
-
x = self.maxpool3(x)
-
# N x 480 x 14 x 14
-
x = self.inception4a(x)
-
# N x 512 x 14 x 14
-
if self.training
and self.aux_logits:
# eval model lose this layer
-
aux1 = self.aux1(x)
-
-
x = self.inception4b(x)
-
# N x 512 x 14 x 14
-
x = self.inception4c(x)
-
# N x 512 x 14 x 14
-
x = self.inception4d(x)
-
# N x 528 x 14 x 14
-
if self.training
and self.aux_logits:
# eval model lose this layer
-
aux2 = self.aux2(x)
-
-
x = self.inception4e(x)
-
# N x 832 x 14 x 14
-
x = self.maxpool4(x)
-
# N x 832 x 7 x 7
-
x = self.inception5a(x)
-
# N x 832 x 7 x 7
-
x = self.inception5b(x)
-
# N x 1024 x 7 x 7
-
-
x = self.avgpool(x)
-
# N x 1024 x 1 x 1
-
x = torch.flatten(x,
1)
-
# N x 1024
-
x = self.dropout(x)
-
x = self.fc(x)
-
# N x 1000 (num_classes)
-
if self.training
and self.aux_logits:
# eval model lose this layer
-
return x, aux2, aux1
-
return x
-
-
def
_initialize_weights(
self):
-
for m
in self.modules():
-
if
isinstance(m, nn.Conv2d):
-
nn.init.kaiming_normal_(m.weight, mode=
'fan_out', nonlinearity=
'relu')
-
if m.bias
is
not
None:
-
nn.init.constant_(m.bias,
0)
-
elif
isinstance(m, nn.Linear):
-
nn.init.normal_(m.weight,
0,
0.01)
-
nn.init.constant_(m.bias,
0)
-
-
-
class
Inception(nn.Module):
-
def
__init__(
self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):
-
super(Inception, self).__init__()
-
-
self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=
1)
-
-
self.branch2 = nn.Sequential(
-
BasicConv2d(in_channels, ch3x3red, kernel_size=
1),
-
BasicConv2d(ch3x3red, ch3x3, kernel_size=
3, padding=
1)
# 保证输出大小等于输入大小
-
)
-
-
self.branch3 = nn.Sequential(
-
BasicConv2d(in_channels, ch5x5red, kernel_size=
1),
-
# 在官方的实现中,其实是3x3的kernel并不是5x5,这里我也懒得改了,具体可以参考下面的issue
-
# Please see https://github.com/pytorch/vision/issues/906 for details.
-
BasicConv2d(ch5x5red, ch5x5, kernel_size=
5, padding=
2)
# 保证输出大小等于输入大小
-
)
-
-
self.branch4 = nn.Sequential(
-
nn.MaxPool2d(kernel_size=
3, stride=
1, padding=
1),
-
BasicConv2d(in_channels, pool_proj, kernel_size=
1)
-
)
-
-
def
forward(
self, x):
-
branch1 = self.branch1(x)
-
branch2 = self.branch2(x)
-
branch3 = self.branch3(x)
-
branch4 = self.branch4(x)
-
-
outputs = [branch1, branch2, branch3, branch4]
-
return torch.cat(outputs,
1)
-
-
-
class
InceptionAux(nn.Module):
-
def
__init__(
self, in_channels, num_classes):
-
super(InceptionAux, self).__init__()
-
self.averagePool = nn.AvgPool2d(kernel_size=
5, stride=
3)
-
self.conv = BasicConv2d(in_channels,
128, kernel_size=
1)
# output[batch, 128, 4, 4]
-
-
self.fc1 = nn.Linear(
2048,
1024)
-
self.fc2 = nn.Linear(
1024, num_classes)
-
-
def
forward(
self, x):
-
# aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
-
x = self.averagePool(x)
-
# aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4
-
x = self.conv(x)
-
# N x 128 x 4 x 4
-
x = torch.flatten(x,
1)
-
x = F.dropout(x,
0.5, training=self.training)
-
# N x 2048
-
x = F.relu(self.fc1(x), inplace=
True)
-
x = F.dropout(x,
0.5, training=self.training)
-
# N x 1024
-
x = self.fc2(x)
-
# N x num_classes
-
return x
-
-
-
class
BasicConv2d(nn.Module):
-
def
__init__(
self, in_channels, out_channels, **kwargs):
-
super(BasicConv2d, self).__init__()
-
self.conv = nn.Conv2d(in_channels, out_channels, **kwargs)
-
self.relu = nn.ReLU(inplace=
True)
-
-
def
forward(
self, x):
-
x = self.conv(x)
-
x = self.relu(x)
-
return x
ResNet
到目前为止,我觉得这个网络是所有网络中最厉害的一个,迭代一次精度就到了90%多,最高94%左右,也可以利用迁移学习加速进行训练。
首先它的网络结构可以突破一百层,运用了残差块的思想,丢弃dropout,使用Batch Normalization加速训练。
18层和34层的结构,在conv2_x这一层,没有经过一个1*1的卷积层,通常使用实线直接标注,后面层的第一个残差块,都是用了一个1*1的卷积核,得到我们想要的维数。
50层,101层以及152层的结构,第一个残差块都是用了一个1*1的卷积核,注意的是,conv2_x这一层对应的1*1卷积层只改变了深度,高宽没变,接下来的几层不仅深度改变,高度宽度都改变。
运用迁移学习,可以快速的训练出一个理想的结果,当数据集较小时也能训练出理想的结果。常见的迁移学习方式有载入权重后训练所有参数,或者载入权重后只训练最后几层参数,还有就是载入权重后在原网络基础上再添加一层全连接层,仅训练一个全连接层。
还有一个ResNeXt网络,这个网络是对ResNet的一个改进,但是训练的时候,我感觉好像有点。。。基本是一个groups分组的思想,能减少一部分参数,降低错误率。
-
import torch.nn
as nn
-
import torch
-
-
-
# 18层,34层
-
class
BasicBlock(nn.Module):
-
expansion =
1
-
-
def
__init__(
self, in_channel, out_channel, stride=1, downsample=None, **kwargs):
-
super(BasicBlock, self).__init__()
-
self.conv1 = nn.Conv2d(in_channels=in_channel, out_channels=out_channel,
-
kernel_size=
3, stride=stride, padding=
1, bias=
False)
-
self.bn1 = nn.BatchNorm2d(out_channel)
-
self.relu = nn.ReLU()
-
self.conv2 = nn.Conv2d(in_channels=out_channel, out_channels=out_channel,
-
kernel_size=
3, stride=
1, padding=
1, bias=
False)
-
self.bn2 = nn.BatchNorm2d(out_channel)
-
self.downsample = downsample
-
-
def
forward(
self, x):
-
identity = x
-
if self.downsample
is
not
None:
-
identity = self.downsample(x)
-
-
out = self.conv1(x)
-
out = self.bn1(out)
-
out = self.relu(out)
-
-
out = self.conv2(out)
-
out = self.bn2(out)
-
-
out += identity
-
out = self.relu(out)
-
-
return out
-
-
class
ResNet(nn.Module):
-
-
def
__init__(
self,
-
block,
-
blocks_num,
-
num_classes=1000,
-
include_top=True,
-
groups=1,
-
width_per_group=64):
-
super(ResNet, self).__init__()
-
self.include_top = include_top
-
self.in_channel =
64
-
-
self.groups = groups
-
self.width_per_group = width_per_group
-
-
self.conv1 = nn.Conv2d(
3, self.in_channel, kernel_size=
7, stride=
2,
-
padding=
3, bias=
False)
-
self.bn1 = nn.BatchNorm2d(self.in_channel)
-
self.relu = nn.ReLU(inplace=
True)
-
self.maxpool = nn.MaxPool2d(kernel_size=
3, stride=
2, padding=
1)
-
self.layer1 = self._make_layer(block,
64, blocks_num[
0])
-
self.layer2 = self._make_layer(block,
128, blocks_num[
1], stride=
2)
-
self.layer3 = self._make_layer(block,
256, blocks_num[
2], stride=
2)
-
self.layer4 = self._make_layer(block,
512, blocks_num[
3], stride=
2)
-
if self.include_top:
-
self.avgpool = nn.AdaptiveAvgPool2d((
1,
1))
# output size = (1, 1)
-
self.fc = nn.Linear(
512 * block.expansion, num_classes)
-
-
for m
in self.modules():
-
if
isinstance(m, nn.Conv2d):
-
nn.init.kaiming_normal_(m.weight, mode=
'fan_out', nonlinearity=
'relu')
-
-
def
_make_layer(
self, block, channel, block_num, stride=1):
-
downsample =
None
-
if stride !=
1
or self.in_channel != channel * block.expansion:
-
downsample = nn.Sequential(
-
nn.Conv2d(self.in_channel, channel * block.expansion, kernel_size=
1, stride=stride, bias=
False),
-
nn.BatchNorm2d(channel * block.expansion))
-
-
layers = []
-
layers.append(block(self.in_channel,
-
channel,
-
downsample=downsample,
-
stride=stride,
-
groups=self.groups,
-
width_per_group=self.width_per_group))
-
self.in_channel = channel * block.expansion
-
-
for _
in
range(
1, block_num):
-
layers.append(block(self.in_channel,
-
channel,
-
groups=self.groups,
-
width_per_group=self.width_per_group))
-
-
return nn.Sequential(*layers)
-
-
def
forward(
self, x):
-
x = self.conv1(x)
-
x = self.bn1(x)
-
x = self.relu(x)
-
x = self.maxpool(x)
-
-
x = self.layer1(x)
-
x = self.layer2(x)
-
x = self.layer3(x)
-
x = self.layer4(x)
-
-
if self.include_top:
-
x = self.avgpool(x)
-
x = torch.flatten(x,
1)
-
x = self.fc(x)
-
-
return x
-
-
-
# 3463代表残差结构的个数
-
def
resnet34(
num_classes=1000, include_top=True):
-
# https://download.pytorch.org/models/resnet34-333f7ec4.pth
-
return ResNet(BasicBlock, [
3,
4,
6,
3], num_classes=num_classes, include_top=include_top)
MobileNetV1、V2、V3
MobileNetV1网络的亮点主要是采用DW卷积,增加超参数α和β,这俩参数是人为设定的,虽然准确率稍微减少了一点,但是模型参数少了很多。
MobileNetV1网络采用了到残差结构,准确率更高,模型更小。MobileNetV3网络采用了更进一步的更新,加入了注意力机制,更新了激活函数等等。MobileNetV2实现如下。
-
from torch
import nn
-
import torch
-
-
class
ConvBNReLU(nn.Sequential):
-
def
__init__(
self, in_channel, out_channel, kernel_size=3, stride=1, groups=1):
-
padding = (kernel_size -
1) //
2
-
super(ConvBNReLU, self).__init__(
-
nn.Conv2d(in_channel, out_channel, kernel_size, stride, padding, groups=groups, bias=
False),
-
nn.BatchNorm2d(out_channel),
-
nn.ReLU6(inplace=
True)
-
)
-
-
-
class
InvertedResidual(nn.Module):
-
def
__init__(
self, in_channel, out_channel, stride, expand_ratio):
-
super(InvertedResidual, self).__init__()
-
hidden_channel = in_channel * expand_ratio
-
self.use_shortcut = stride ==
1
and in_channel == out_channel
-
-
layers = []
-
if expand_ratio !=
1:
-
# 1x1 pointwise conv
-
layers.append(ConvBNReLU(in_channel, hidden_channel, kernel_size=
1))
-
layers.extend([
-
# 3x3 depthwise conv
-
ConvBNReLU(hidden_channel, hidden_channel, stride=stride, groups=hidden_channel),
-
# 1x1 pointwise conv(linear)
-
nn.Conv2d(hidden_channel, out_channel, kernel_size=
1, bias=
False),
-
nn.BatchNorm2d(out_channel),
-
])
-
-
self.conv = nn.Sequential(*layers)
-
-
def
forward(
self, x):
-
if self.use_shortcut:
-
return x + self.conv(x)
-
else:
-
return self.conv(x)
-
-
-
class
MobileNetV2(nn.Module):
-
def
__init__(
self, num_classes=1000, alpha=1.0, round_nearest=8):
-
super(MobileNetV2, self).__init__()
-
block = InvertedResidual
-
input_channel = _make_divisible(
32 * alpha, round_nearest)
-
last_channel = _make_divisible(
1280 * alpha, round_nearest)
-
-
inverted_residual_setting = [
-
# t, c, n, s
-
[
1,
16,
1,
1],
-
[
6,
24,
2,
2],
-
[
6,
32,
3,
2],
-
[
6,
64,
4,
2],
-
[
6,
96,
3,
1],
-
[
6,
160,
3,
2],
-
[
6,
320,
1,
1],
-
]
-
-
features = []
-
# conv1 layer
-
features.append(ConvBNReLU(
3, input_channel, stride=
2))
-
# building inverted residual residual blockes
-
for t, c, n, s
in inverted_residual_setting:
-
output_channel = _make_divisible(c * alpha, round_nearest)
-
for i
in
range(n):
-
stride = s
if i ==
0
else
1
-
features.append(block(input_channel, output_channel, stride, expand_ratio=t))
-
input_channel = output_channel
-
# building last several layers
-
features.append(ConvBNReLU(input_channel, last_channel,
1))
-
# combine feature layers
-
self.features = nn.Sequential(*features)
-
-
# building classifier
-
self.avgpool = nn.AdaptiveAvgPool2d((
1,
1))
-
self.classifier = nn.Sequential(
-
nn.Dropout(
0.2),
-
nn.Linear(last_channel, num_classes)
-
)
-
-
# weight initialization
-
for m
in self.modules():
-
if
isinstance(m, nn.Conv2d):
-
nn.init.kaiming_normal_(m.weight, mode=
'fan_out')
-
if m.bias
is
not
None:
-
nn.init.zeros_(m.bias)
-
elif
isinstance(m, nn.BatchNorm2d):
-
nn.init.ones_(m.weight)
-
nn.init.zeros_(m.bias)
-
elif
isinstance(m, nn.Linear):
-
nn.init.normal_(m.weight,
0,
0.01)
-
nn.init.zeros_(m.bias)
-
-
def
forward(
self, x):
-
x = self.features(x)
-
x = self.avgpool(x)
-
x = torch.flatten(x,
1)
-
x = self.classifier(x)
-
return x
卷积神经网络算是正式完结了,争取下周把目标检测也尽快弄清楚hhh。
转载:https://blog.csdn.net/weixin_63967970/article/details/128721489