飞道的博客

深度学习Week10-YOLOv5-Backbone模块实现(Pytorch)

264人阅读  评论(0)

● 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
● 🍦 参考文章:Pytorch实战 |第P9周:YOLOv5-Backbone模块实现(训练营内部成员可读)
● 🍖 原作者:K同学啊|接辅导、项目定制

 类似于上周内容,除了网络结构部分的内容,其余部分的内容和上周一样。

 yolov5结构示意图

一、 前期准备

1. 设置GPU


  
  1. import torch
  2. import torch.nn as nn
  3. import torchvision.transforms as transforms
  4. import torchvision
  5. from torchvision import transforms, datasets
  6. import os,PIL,pathlib,warnings
  7. warnings.filterwarnings( "ignore") #忽略警告信息
  8. device = torch.device( "cuda" if torch.cuda.is_available() else "cpu")
  9. print(device)

2. 导入数据


  
  1. import os,PIL,random,pathlib
  2. data_dir = './data/'
  3. data_dir = pathlib.Path(data_dir)
  4. data_paths = list(data_dir.glob( '*'))
  5. classeNames = [ str(path).split( "\\")[ 1] for path in data_paths]
  6. print(classeNames)

图形变换,输出一下:用到torchvision.transforms.Compose()


  
  1. train_transforms = transforms.Compose([
  2. transforms.Resize([ 224, 224]), # 将输入图片resize成统一尺寸
  3. # transforms.RandomHorizontalFlip(), # 随机水平翻转
  4. transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
  5. transforms.Normalize( # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
  6. mean=[ 0.485, 0.456, 0.406],
  7. std=[ 0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
  8. ])
  9. test_transform = transforms.Compose([
  10. transforms.Resize([ 224, 224]), # 将输入图片resize成统一尺寸
  11. transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
  12. transforms.Normalize( # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
  13. mean=[ 0.485, 0.456, 0.406],
  14. std=[ 0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
  15. ])
  16. total_data = datasets.ImageFolder( "./data/",transform=train_transforms)
  17. print(total_data.class_to_idx)

3. 划分数据集


  
  1. train_size = int( 0.8 * len(total_data))
  2. test_size = len(total_data) - train_size
  3. train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])

  
  1. batch_size = 16
  2. train_dl = torch.utils.data.DataLoader(train_dataset,
  3. batch_size=batch_size,
  4. shuffle= True,
  5. num_workers= 0)
  6. test_dl = torch.utils.data.DataLoader(test_dataset,
  7. batch_size=batch_size,
  8. shuffle= True,
  9. num_workers= 0)
  10. for X, y in test_dl:
  11. print( "Shape of X [N, C, H, W]: ", X.shape)
  12. print( "Shape of y: ", y.shape, y.dtype)
  13. break

二、搭建YOLOv5-Backbone模型

1. 搭建模型


  
  1. import torch.nn.functional as F
  2. def autopad( k, p=None): # kernel, padding
  3. # Pad to 'same'
  4. if p is None:
  5. p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
  6. return p
  7. class Conv(nn.Module):
  8. # Standard convolution
  9. def __init__( self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
  10. super().__init__()
  11. self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias= False)
  12. self.bn = nn.BatchNorm2d(c2)
  13. self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
  14. def forward( self, x):
  15. return self.act(self.bn(self.conv(x)))
  16. class Bottleneck(nn.Module):
  17. # Standard bottleneck
  18. def __init__( self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
  19. super().__init__()
  20. c_ = int(c2 * e) # hidden channels
  21. self.cv1 = Conv(c1, c_, 1, 1)
  22. self.cv2 = Conv(c_, c2, 3, 1, g=g)
  23. self.add = shortcut and c1 == c2
  24. def forward( self, x):
  25. return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
  26. class C3(nn.Module):
  27. # CSP Bottleneck with 3 convolutions
  28. def __init__( self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
  29. super().__init__()
  30. c_ = int(c2 * e) # hidden channels
  31. self.cv1 = Conv(c1, c_, 1, 1)
  32. self.cv2 = Conv(c1, c_, 1, 1)
  33. self.cv3 = Conv( 2 * c_, c2, 1) # act=FReLU(c2)
  34. self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e= 1.0) for _ in range(n)))
  35. #SSPF模块将经过Conv的x、一次池化后的y1、两次池化后的y2和3次池化后的self.m(y2)先进行拼接,然后再Conv提取特征。 仔细观察不难发现,虽然SSPF对特征图进行了多次池化,但是特征图尺寸并未发生变化,通道数更不会变化,所以后续的4个输出能够在channel维度进行融合.
  36. def forward( self, x):
  37. return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim= 1))
  38. class SPPF(nn.Module):
  39. # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
  40. def __init__( self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
  41. super().__init__()
  42. c_ = c1 // 2 # hidden channels
  43. self.cv1 = Conv(c1, c_, 1, 1)
  44. self.cv2 = Conv(c_ * 4, c2, 1, 1)
  45. self.m = nn.MaxPool2d(kernel_size=k, stride= 1, padding=k // 2)
  46. def forward( self, x):
  47. x = self.cv1(x)
  48. with warnings.catch_warnings():
  49. warnings.simplefilter( 'ignore') # suppress torch 1.9.0 max_pool2d() warning
  50. y1 = self.m(x)
  51. y2 = self.m(y1)
  52. return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))
  53. """
  54. 这个是YOLOv5, 6.0版本的主干网络,这里进行复现
  55. (注:有部分删改,详细讲解将在后续进行展开)
  56. """
  57. class YOLOv5_backbone(nn.Module):
  58. def __init__( self):
  59. super(YOLOv5_backbone, self).__init__()
  60. self.Conv_1 = Conv( 3, 64, 3, 2, 2)
  61. self.Conv_2 = Conv( 64, 128, 3, 2)
  62. self.C3_3 = C3( 128, 128)
  63. self.Conv_4 = Conv( 128, 256, 3, 2)
  64. self.C3_5 = C3( 256, 256)
  65. self.Conv_6 = Conv( 256, 512, 3, 2)
  66. self.C3_7 = C3( 512, 512)
  67. self.Conv_8 = Conv( 512, 1024, 3, 2)
  68. self.C3_9 = C3( 1024, 1024)
  69. self.SPPF = SPPF( 1024, 1024, 5)
  70. # 全连接网络层,用于分类
  71. self.classifier = nn.Sequential(
  72. nn.Linear(in_features= 65536, out_features= 100),
  73. nn.ReLU(),
  74. nn.Linear(in_features= 100, out_features= 4)
  75. )
  76. def forward( self, x):
  77. x = self.Conv_1(x)
  78. x = self.Conv_2(x)
  79. x = self.C3_3(x)
  80. x = self.Conv_4(x)
  81. x = self.C3_5(x)
  82. x = self.Conv_6(x)
  83. x = self.C3_7(x)
  84. x = self.Conv_8(x)
  85. x = self.C3_9(x)
  86. x = self.SPPF(x)
  87. x = torch.flatten(x, start_dim= 1)
  88. x = self.classifier(x)
  89. return x
  90. device = "cuda" if torch.cuda.is_available() else "cpu"
  91. print( "Using {} device". format(device))
  92. model = YOLOv5_backbone().to(device)
  93. print(model)

2. 查看模型详情

这里就不展示了,有兴趣大家琢磨哈哈哈

三、 训练模型

1. 编写训练和测试函数

和之前cnn网络、vgg一样


  
  1. # 训练循环
  2. def train( dataloader, model, loss_fn, optimizer):
  3. size = len(dataloader.dataset) # 训练集的大小
  4. num_batches = len(dataloader) # 批次数目, (size/batch_size,向上取整)
  5. train_loss, train_acc = 0, 0 # 初始化训练损失和正确率
  6. for X, y in dataloader: # 获取图片及其标签
  7. X, y = X.to(device), y.to(device)
  8. # 计算预测误差
  9. pred = model(X) # 网络输出
  10. loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
  11. # 反向传播
  12. optimizer.zero_grad() # grad属性归零
  13. loss.backward() # 反向传播
  14. optimizer.step() # 每一步自动更新
  15. # 记录acc与loss
  16. train_acc += (pred.argmax( 1) == y). type(torch. float). sum().item()
  17. train_loss += loss.item()
  18. train_acc /= size
  19. train_loss /= num_batches
  20. return train_acc, train_loss

  
  1. def test (dataloader, model, loss_fn):
  2. size = len(dataloader.dataset) # 测试集的大小
  3. num_batches = len(dataloader) # 批次数目
  4. test_loss, test_acc = 0, 0
  5. # 当不进行训练时,停止梯度更新,节省计算内存消耗
  6. with torch.no_grad():
  7. for imgs, target in dataloader:
  8. imgs, target = imgs.to(device), target.to(device)
  9. # 计算loss
  10. target_pred = model(imgs)
  11. loss = loss_fn(target_pred, target)
  12. test_loss += loss.item()
  13. test_acc += (target_pred.argmax( 1) == target). type(torch. float). sum().item()
  14. test_acc /= size
  15. test_loss /= num_batches
  16. return test_acc, test_loss

2. 正式训练

这里也设置了训练器,结合前几次实验经验,使用Adam模型


  
  1. import copy
  2. optimizer = torch.optim.Adam(model.parameters(), lr= 1e-4)
  3. loss_fn = nn.CrossEntropyLoss() # 创建损失函数
  4. epochs = 20
  5. train_loss = []
  6. train_acc = []
  7. test_loss = []
  8. test_acc = []
  9. best_acc = 0 # 设置一个最佳准确率,作为最佳模型的判别指标
  10. for epoch in range(epochs):
  11. # 更新学习率(使用自定义学习率时使用)
  12. # adjust_learning_rate(optimizer, epoch, learn_rate)
  13. model.train()
  14. epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
  15. # scheduler.step() # 更新学习率(调用官方动态学习率接口时使用)
  16. model. eval()
  17. epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
  18. # 保存最佳模型到 best_model
  19. if epoch_test_acc > best_acc:
  20. best_acc = epoch_test_acc
  21. best_model = copy.deepcopy(model)
  22. train_acc.append(epoch_train_acc)
  23. train_loss.append(epoch_train_loss)
  24. test_acc.append(epoch_test_acc)
  25. test_loss.append(epoch_test_loss)
  26. # 获取当前的学习率
  27. lr = optimizer.state_dict()[ 'param_groups'][ 0][ 'lr']
  28. template = ( 'Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
  29. print(template. format(epoch + 1, epoch_train_acc * 100, epoch_train_loss,
  30. epoch_test_acc * 100, epoch_test_loss, lr))
  31. # 保存最佳模型到文件中
  32. PATH = './best_model.pth' # 保存的参数文件名
  33. torch.save(model.state_dict(), PATH)
  34. print( 'Done')

四、 结果可视化

1. Loss与Accuracy图


  
  1. import matplotlib.pyplot as plt
  2. #隐藏警告
  3. import warnings
  4. warnings.filterwarnings( "ignore") #忽略警告信息
  5. plt.rcParams[ 'font.sans-serif'] = [ 'SimHei'] # 用来正常显示中文标签
  6. plt.rcParams[ 'axes.unicode_minus'] = False # 用来正常显示负号
  7. plt.rcParams[ 'figure.dpi'] = 100 #分辨率
  8. epochs_range = range(epochs)
  9. plt.figure(figsize=( 12, 3))
  10. plt.subplot( 1, 2, 1)
  11. plt.plot(epochs_range, train_acc, label= 'Training Accuracy')
  12. plt.plot(epochs_range, test_acc, label= 'Test Accuracy')
  13. plt.legend(loc= 'lower right')
  14. plt.title( 'Training and Validation Accuracy')
  15. plt.subplot( 1, 2, 2)
  16. plt.plot(epochs_range, train_loss, label= 'Training Loss')
  17. plt.plot(epochs_range, test_loss, label= 'Test Loss')
  18. plt.legend(loc= 'upper right')
  19. plt.title( 'Training and Validation Loss')
  20. plt.show()

  2. 指定图片进行预测


  
  1. from PIL import Image
  2. classes = list(total_data.class_to_idx)
  3. def predict_one_image( image_path, model, transform, classes):
  4. test_img = Image. open(image_path).convert( 'RGB')
  5. plt.imshow(test_img) # 展示预测的图片
  6. test_img = transform(test_img)
  7. img = test_img.to(device).unsqueeze( 0)
  8. model. eval()
  9. output = model(img)
  10. _, pred = torch. max(output, 1)
  11. pred_class = classes[pred]
  12. print( f'预测结果是:{pred_class}')
  13. # 预测训练集中的某张照片
  14. predict_one_image(image_path= './data/sunrise/sunrise8.jpg',
  15. model=model,
  16. transform=train_transforms,
  17. classes=classes)

3. 模型评估

 以往都是看看最后几轮得到准确率,但是跳动比较大就不太好找准确率最高的一回,所以我们用函数返回进行比较。


  
  1. best_model. eval()
  2. epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)
  3. print(epoch_test_acc, epoch_test_loss)
  4. print(epoch_test_acc)


转载:https://blog.csdn.net/m0_62237233/article/details/128294998
查看评论
* 以上用户言论只代表其个人观点,不代表本网站的观点或立场