飞道的博客

Matplotlib可视化50图:气泡图(2)

420人阅读  评论(0)

导读

本文[1]将学习如何使用 PythonMatplotlib 库通过示例绘制气泡图。

简介

气泡图是散点图的改进版本。在散点图中,有两个维度 x 和 y。在气泡图中,存在三个维度 x、y 和 z。其中第三维 z 表示权重。这样,气泡图比二维散点图在视觉上提供了更多信息。

数据准备

对于本教程,我将使用包含加拿大移民信息的数据集。它拥有从 1980 年到 2013 年的数据,其中包括来自 195 个国家/地区的移民人数。导入必要的包和数据集:

import numpy as np  
import pandas as pd 
df = pd.read_excel('https://s3-api.us-geo.objectstorage.softlayer.net/cf-courses-data/CognitiveClass/DV0101EN/labs/Data_Files/Canada.xlsx',
                       sheet_name='Canada by Citizenship',
                       skiprows=range(20),
                       skipfooter=2)

数据集太大。所以,我不能在这里显示完整截图。让我们看看列的名称。

dataset

我们不会使用很多列。我只是删除了这些列并将国家名称(“OdName”)设置为索引。

df = df.drop(columns = ['Type''Coverage''AREA''AreaName',      'REG''RegName''DEV''DevName',]).set_index('OdName')
df.head()
example

我为这个练习选择了爱尔兰和巴西的数据。没有特殊原因。我随机选择了它们。

Ireland = df.loc['Ireland']
Brazil = df.loc['Brazil']

归一化

有几种不同的方法可以归一化数据。我们将数据归一化以使数据处于相似的范围内。爱尔兰和巴西的移民数据有不同的范围。我需要将它们调整到 0 到 1 的范围内。我只是将爱尔兰数据除以爱尔兰数据系列的最大值。我对巴西的数据系列做了同样的事情。

i_normal = Ireland / Ireland.max()
b_normal = Brazil / Brazil.max()

我们将根据年份绘制爱尔兰和巴西的数据。将年份列在清单上会很有用。

years = list(range(19802014))

可视化

为了看看区别,让我们先绘制散点图。

import matplotlib.pyplot as plt
plt.figure(figsize=(148))
plt.scatter(years, Ireland, color='blue')
plt.scatter(years, Brazil, color='orange')
plt.xlabel("Years", size=14)
plt.ylabel("Number of immigrants", size=14)
plt.show()
scatter

现在,绘制气泡图。我们必须输入我们之前定义的尺寸。

plt.figure(figsize=(128))
plt.scatter(years, Brazil, 
                  color='darkblue'
                 alpha=0.5,
                 s = b_normal * 2000)
plt.scatter(years, Ireland, 
                  color='purple'
                 alpha=0.5,
                 s = i_normal * 2000,
                 )
plt.xlabel("Years", size=14)
plt.ylabel("Number of immigrants", size=14)
bubble

我们可以通过气泡的大小来了解移民的数量。气泡越小,移民人数越少。

我们也可以让结果更多彩多姿。为了让它有点意义,我们需要对数据系列进行排序。您很快就会看到原因。

c_br = sorted(Brazil)
c_fr = sorted(France)

现在我们将传递这些值来改变颜色。

plt.figure(figsize=(128))
plt.scatter(years, Brazil, 
                  c=c_br,
                 alpha=0.5,
                 s = b_normal * 2000)
plt.scatter(years, Ireland, 
                  c=c_fr,
                 alpha=0.5,
                 s = i_normal * 2000,
                 )
plt.xlabel("Years", size=14)
plt.ylabel("Number of immigrants", size=14)
result

现在我们添加了另一个维度,颜色。颜色随移民数量变化。但是当我们绘制两个变量时,它并没有那么好。因为在这个过程中我们没有明确定义各个变量的颜色。但是当我们在 y 轴上绘制一个变量时,它做得很好。让我们绘制每年来自巴西的移民人数,以了解多年来的趋势。

plt.figure(figsize=(128))
plt.scatter(years, Brazil, 
                  c=c_br,
                 alpha=0.5,
                 s = b_normal * 2000)
plt.xlabel("Years", size=14)
plt.ylabel("Number of immigrants of Brazil", size=14)
color

欢迎Star -> 学习目录

更多教程 -> 学习目录


参考资料

[1]

Source: https://towardsdatascience.com/bubble-plots-in-matplotlib-3f0b3927d8f9

本文由 mdnice 多平台发布


转载:https://blog.csdn.net/swindler_ice/article/details/128184392
查看评论
* 以上用户言论只代表其个人观点,不代表本网站的观点或立场