本文代码参考 RT-Thread 官方 BSP
实验功能
例程源码:(main.c)
该实验实现了 RGB 灯 8 种状态的切换,切换间隔为 500 ms。
/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-08-22 balanceTWK first implementation
*/
#include <rtthread.h>
#include <rtdevice.h>
#include <board.h>
#define DBG_TAG "main"
#define DBG_LVL DBG_LOG
#include <rtdbg.h>
/* 定义 LED 亮灭电平 */
#define LED_ON (0)
#define LED_OFF (1)
/* 定义 8 组 LED 闪灯表,其顺序为 R G B */
static const rt_uint8_t _blink_tab[][3] =
{
{
LED_ON, LED_ON, LED_ON},
{
LED_OFF, LED_ON, LED_ON},
{
LED_ON, LED_OFF, LED_ON},
{
LED_ON, LED_ON, LED_OFF},
{
LED_OFF, LED_OFF, LED_ON},
{
LED_ON, LED_OFF, LED_OFF},
{
LED_OFF, LED_ON, LED_OFF},
{
LED_OFF, LED_OFF, LED_OFF},
};
int main(void)
{
unsigned int count = 1;
unsigned int group_num = sizeof(_blink_tab)/sizeof(_blink_tab[0]);
unsigned int group_current;
/* 设置 RGB 灯引脚为输出模式 */
rt_pin_mode(PIN_LED_R, PIN_MODE_OUTPUT);
rt_pin_mode(PIN_LED_G, PIN_MODE_OUTPUT);
rt_pin_mode(PIN_LED_B, PIN_MODE_OUTPUT);
while (count > 0)
{
/* 获得组编号 */
group_current = count % group_num;
/* 控制 RGB 灯 */
rt_pin_write(PIN_LED_R, _blink_tab[group_current][0]);
rt_pin_write(PIN_LED_G, _blink_tab[group_current][1]);
rt_pin_write(PIN_LED_B, _blink_tab[group_current][2]);
/* 输出 LOG 信息 */
LOG_D("group: %d | red led [%-3.3s] | green led [%-3.3s] | blue led [%-3.3s]",
group_current,
_blink_tab[group_current][0] == LED_ON ? "ON" : "OFF",
_blink_tab[group_current][1] == LED_ON ? "ON" : "OFF",
_blink_tab[group_current][2] == LED_ON ? "ON" : "OFF");
/* 延时一段时间 */
rt_thread_mdelay(500);
count++;
}
return 0;
}
代码剖析
rt_pin_mode()
该函数的作用是 GPIO Pin 的初始化,定义为
/* RT-Thread Hardware PIN APIs */
void rt_pin_mode(rt_base_t pin, rt_base_t mode)
{
RT_ASSERT(_hw_pin.ops != RT_NULL);
_hw_pin.ops->pin_mode(&_hw_pin.parent, pin, mode);
}
参数 pin 是一个 rt_base_t 变量(long),下面的 GET_PIN()
是 STM32 的 pin 值宏定义,第一个参数填大写字母,第二个参数填数字。
#define GET_PIN(PORTx,PIN) (rt_base_t)((16 * ( ((rt_base_t)__STM32_PORT(PORTx) - (rt_base_t)GPIOA)/(0x0400UL) )) + PIN)
#define __STM32_PORT(port) GPIO##port // ## 是字符连接符,假如 port 为 A,则表示 GPIOA
例如实验中的
#define PIN_LED_R GET_PIN(E, 7)
,表示 GPIOE GPIO_Pin7
目前 RT-Thread 支持的引脚工作模式包括:
#define PIN_MODE_OUTPUT 0x00 /* 输出 */
#define PIN_MODE_INPUT 0x01 /* 输入 */
#define PIN_MODE_INPUT_PULLUP 0x02 /* 上拉输入 */
#define PIN_MODE_INPUT_PULLDOWN 0x03 /* 下拉输入 */
#define PIN_MODE_OUTPUT_OD 0x04 /* 开漏输出 */
在 bsp 的 drv_gpio.c
文件中,有底层 GPIO 驱动,下面是 STM32 的 GPIO 模式设置的驱动函数(大家应该很熟悉,就是用 HAL 库写的 GPIO 初始化代码)
static void stm32_pin_mode(rt_device_t dev, rt_base_t pin, rt_base_t mode)
{
const struct pin_index *index;
GPIO_InitTypeDef GPIO_InitStruct;
index = get_pin(pin);
if (index == RT_NULL)
{
return;
}
/* Configure GPIO_InitStructure */
GPIO_InitStruct.Pin = index->pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
if (mode == PIN_MODE_OUTPUT)
{
/* output setting */
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
}
else if (mode == PIN_MODE_INPUT)
{
/* input setting: not pull. */
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
}
else if (mode == PIN_MODE_INPUT_PULLUP)
{
/* input setting: pull up. */
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
}
else if (mode == PIN_MODE_INPUT_PULLDOWN)
{
/* input setting: pull down. */
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLDOWN;
}
else if (mode == PIN_MODE_OUTPUT_OD)
{
/* output setting: od. */
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
GPIO_InitStruct.Pull = GPIO_NOPULL;
}
HAL_GPIO_Init(index->gpio, &GPIO_InitStruct);
}
rt_pin_write()
GPIO 写函数,下面是函数的定义,
void rt_pin_write(rt_base_t pin, rt_base_t value)
{
RT_ASSERT(_hw_pin.ops != RT_NULL);
_hw_pin.ops->pin_write(&_hw_pin.parent, pin, value);
}
和 GPIO 模式配置函数类似,它其实也会调用底层驱动里对应的函数,该底层函数是通过 HAL_GPIO_WritePin()
来完成 GPIO Pin 的修改。
static void stm32_pin_write(rt_device_t dev, rt_base_t pin, rt_base_t value)
{
const struct pin_index *index;
index = get_pin(pin);
if (index == RT_NULL)
{
return;
}
HAL_GPIO_WritePin(index->gpio, index->pin, (GPIO_PinState)value);
}
LOG_D()
本实验中,我们可以将 LOG_D()
视为 rt_kprintf()
,
#define dbg_log_line(lvl, color_n, fmt, ...) \
do \
{
\
_DBG_LOG_HDR(lvl, color_n); \
rt_kprintf(fmt, ##__VA_ARGS__); \
_DBG_LOG_X_END; \
} \
while (0)
LOG_D 是 RT-Thread 内核里的一个日志打印函数,详情可见:《RT-Thread 文档中心——ulog 日志》
RT-Thread 的日志 API 包括:
rt_thread_mdelay()
这是 RT-Thread 的毫秒级延时函数,定义如下:
rt_err_t rt_thread_mdelay(rt_int32_t ms)
{
rt_tick_t tick;
// 获取需要的时钟节拍
tick = rt_tick_from_millisecond(ms);
// 阻塞相应的节拍时间
return rt_thread_sleep(tick);
}
rt_tick_from_millisecond()
/**
* 算出 ms 对应的时钟节拍数
*
*
* @param ms the specified millisecond
* - Negative Number wait forever
* - Zero not wait
* - Max 0x7fffffff
*
* @return the calculated tick
*/
rt_tick_t rt_tick_from_millisecond(rt_int32_t ms)
{
rt_tick_t tick;
if (ms < 0)
{
tick = (rt_tick_t)RT_WAITING_FOREVER; // -1
}
else
{
// 将“每秒节拍数” / 1000 * ms,算出对应的秒节拍数
tick = RT_TICK_PER_SECOND * (ms / 1000);
// 加上小于 1000ms 部分的节拍数
tick += (RT_TICK_PER_SECOND * (ms % 1000) + 999) / 1000;
}
/* return the calculated tick */
return tick;
}
rt_thread_sleep()
线程睡眠(挂起)函数,参数是系统节拍数:
/**
* 该函数能让当前线程挂起一段时间(由 tick 决定)
*
* @param tick the sleep ticks
*
* @return RT_EOK
*/
rt_err_t rt_thread_sleep(rt_tick_t tick)
{
register rt_base_t temp;
struct rt_thread *thread;
/* set to current thread */
thread = rt_thread_self();
RT_ASSERT(thread != RT_NULL);
RT_ASSERT(rt_object_get_type((rt_object_t)thread) == RT_Object_Class_Thread);
/* disable interrupt */
temp = rt_hw_interrupt_disable();
/* suspend thread */
rt_thread_suspend(thread);
/* reset the timeout of thread timer and start it */
rt_timer_control(&(thread->thread_timer), RT_TIMER_CTRL_SET_TIME, &tick);
rt_timer_start(&(thread->thread_timer));
/* enable interrupt */
rt_hw_interrupt_enable(temp);
rt_schedule();
/* clear error number of this thread to RT_EOK */
if (thread->error == -RT_ETIMEOUT)
thread->error = RT_EOK;
return RT_EOK;
}
转载:https://blog.csdn.net/weixin_43772810/article/details/125559305
查看评论