s 1 = [ s 1 , 1 T s 2 , 1 T ⋮ s M , 1 T ] s_1 = \left[
sT1,1sT2,1⋮sTM,1
\right]
s1=⎣⎢⎢⎢⎡s1,1Ts2,1T⋮sM,1T⎦⎥⎥⎥⎤
y 1 = [ y 1 T s 2 T ⋮ s M T ] y_1 = \left[
yT1sT2⋮sTM
\right]
y1=⎣⎢⎢⎢⎡y1Ts2T⋮sMT⎦⎥⎥⎥⎤
第1步: s ˙ i , 1 = ∑ j = 1 M a i j ( y ˙ i − y ˙ j ) + b i ( y ˙ i − r ˙ ) = ∑ j = 1 M a i j ( g i ( Θ i ) x i , 2 − g j ( Θ j ) x j , 2 ) + b i ( g i ( Θ i ) x i 2 − r ˙ ) = − ∑ j = 1 M a i j g j ( Θ j ) x j , 2 − b i r ˙ + ( ∑ j = 1 M a i , j + b i ) g i ( Θ i ) x i , 2 =
整个一致性协议为: u i = − ρ s i , 2 + f w i w i = − ( 1 + ρ s ) s i , 2 s i , 1 = ∑ j = 1 M a i j ( y i − y j ) + b i ( y i − r ) s i , 2 = x i , 2 − 1 ( d i + b i ) g i − 1 ( Θ i ) ( − ρ s i , 1 + ∑ j = 1 M a i j g j ( Θ j ) x j , 2 + b i r ˙ )
转换成矩阵写法: [ u 1 u 2 u 3 u 4 ] = − ρ [ s 1 , 2 s 2 , 2 s 3 , 2 s 4 , 2 ] + f [ w 1 w 2 w 3 w 4 ] [ w 1 w 2 w 3 w 4 ] = − ( 1 + ρ s ) [ s 1 , 2 s 2 , 2 s 3 , 2 s 4 , 2 ] [ s 1 , 1 s 2 , 1 s 3 , 1 s 4 , 1 ] = L ⋅ [ y 1 y 2 y 3 y 4 ] + [ b 1 ⋅ ( y 1 − r ) b 2 ⋅ ( y 2 − r ) b 3 ⋅ ( y 3 − r ) b 4 ⋅ ( y 4 − r ) ] = L ⋅ [ x 1 , 1 x 2 , 1 x 3 , 1 x 4 , 1 ] + [ b 1 b 2 b 3 b 4 ] [ x 1 , 1 − r x 2 , 1 − r x 3 , 1 − r x 4 , 1 − r ] [ s 1 , 2 s 2 , 2 s 3 , 2 s 4 , 2 ] = [ x 1 , 2 x 2 , 2 x 3 , 2 x 4 , 2 ] − [ 1 d 1 + b 1 ( − ρ s 1 , 1 + x j , 2 + b 1 r ˙ ) 1 d 2 + b 2 ( − ρ s 2 , 1 + x j , 2 + b 2 r ˙ ) 1 d 3 + b 3 1 d 4 + b 4 ]
仿真部分也给出了干扰的表述方式: Φ i ( x i , 1 , x i , 2 , κ i ) ≤ ∣ x i , 1 ∣ + ∣ x i , 2 ∣ + rand ( 5 )
Φi(xi,1,xi,2,κi)≤|xi,1|+|xi,2|+rand(5)
Φi(xi,1,xi,2,κi)≤∣xi,1∣+∣xi,2∣+rand(5)
把两个公式合并一下(忽略转换矩阵的作用): x ˙ i , 1 = x i , 2 x ˙ i , 2 = u i + Φ i ( x i , 1 , x i , 2 , κ i ) = u i + ∣ x i , 1 ∣ + ∣ x i , 2 ∣ + rand ( 5 ) = − ρ s i , 2 + f w i + ∣ x i , 1 ∣ + ∣ x i , 2 ∣ + rand ( 5 ) = − ρ s i , 2 + f [ − ( 1 + ρ s ) s i , 2 ] + ∣ x i , 1 ∣ + ∣ x i , 2 ∣ + rand ( 5 )