飞道的博客

【Paper】2015_异构无人机群鲁棒一致性协议设计_孙长银

339人阅读  评论(0)

2015_异构无人机群鲁棒一致性协议设计_孙长银

先把无人机的通信拓扑图放出来,这样在接下来的公式分析时能够便于理解。

4 分布式鲁棒一致性协议设计

Laplacian Matrix 是
L = [ 0 0 0 0 0 0 1 − 1 0 0 0 0 1 − 1 0 − 1 0 0 0 0 0 0 0 − 1 1 ] L= \left[

0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 1
\right] L=0001001000011000010100001

s 1 = [ s 1 , 1 T s 2 , 1 T ⋮ s M , 1 T ] s_1 = \left[

s 1 , 1 T s 2 , 1 T s M , 1 T
\right] s1=s1,1Ts2,1TsM,1T

y 1 = [ y 1 T s 2 T ⋮ s M T ] y_1 = \left[

y 1 T s 2 T s M T
\right] y1=y1Ts2TsMT

第1步:
s ˙ i , 1 = ∑ j = 1 M a i j ( y ˙ i − y ˙ j ) + b i ( y ˙ i − r ˙ ) = ∑ j = 1 M a i j (   g i ( Θ i ) x i , 2 − g j ( Θ j ) x j , 2   ) + b i (   g i ( Θ i ) x i 2 − r ˙   ) = − ∑ j = 1 M a i j g j ( Θ j ) x j , 2 − b i r ˙ + ( ∑ j = 1 M a i , j + b i ) g i ( Θ i ) x i , 2 =

s ˙ i , 1 = j = 1 M a i j ( y ˙ i y ˙ j ) + b i ( y ˙ i r ˙ ) = j = 1 M a i j (   g i ( Θ i ) x i , 2 g j ( Θ j ) x j , 2   ) + b i (   g i ( Θ i ) x i 2 r ˙   ) = j = 1 M a i j g j ( Θ j ) x j , 2 b i r ˙ + ( j = 1 M a i , j + b i ) g i ( Θ i ) x i , 2 =
s˙i,1=j=1Maij(y˙iy˙j)+bi(y˙ir˙)=j=1Maij( gi(Θi)xi,2gj(Θj)xj,2 )+bi( gi(Θi)xi2r˙ )=j=1Maijgj(Θj)xj,2bir˙+(j=1Mai,j+bi)gi(Θi)xi,2=

6 Simulations

M M M 个跟随者的动态模型为
x ˙ i , 1 = g i ( Θ i ) x i , 2 x ˙ i , 2 = u i + Φ i ( x i , 1 , x i , 2 , κ i ) y i = x i , 1

x ˙ i , 1 = g i ( Θ i ) x i , 2 x ˙ i , 2 = u i + Φ i ( x i , 1 , x i , 2 , κ i ) y i = x i , 1
x˙i,1=gi(Θi)xi,2x˙i,2=ui+Φi(xi,1,xi,2,κi)yi=xi,1

转换成矩阵写法:
[ x ˙ 1 , 1 x ˙ 2 , 1 x ˙ 3 , 1 x ˙ 4 , 1 ] = [ x 1 , 2 x 2 , 2 x 3 , 2 x 4 , 2 ] [ x ˙ 1 , 2 x ˙ 2 , 2 x ˙ 3 , 2 x ˙ 4 , 2 ] = [ u 1 u 2 u 3 u 4 ] + [ Φ 1 ( x 1 , 1 , x 1 , 2 , κ 1 ) Φ 2 ( x 2 , 1 , x 2 , 2 , κ 2 ) Φ 3 ( x 3 , 1 , x 3 , 2 , κ 3 ) Φ 4 ( x 4 , 1 , x 4 , 2 , κ 4 ) ]

[ x ˙ 1 , 1 x ˙ 2 , 1 x ˙ 3 , 1 x ˙ 4 , 1 ] = [ x 1 , 2 x 2 , 2 x 3 , 2 x 4 , 2 ] [ x ˙ 1 , 2 x ˙ 2 , 2 x ˙ 3 , 2 x ˙ 4 , 2 ] = [ u 1 u 2 u 3 u 4 ] + [ Φ 1 ( x 1 , 1 , x 1 , 2 , κ 1 ) Φ 2 ( x 2 , 1 , x 2 , 2 , κ 2 ) Φ 3 ( x 3 , 1 , x 3 , 2 , κ 3 ) Φ 4 ( x 4 , 1 , x 4 , 2 , κ 4 ) ]
x˙1,1x˙2,1x˙3,1x˙4,1=x1,2x2,2x3,2x4,2x˙1,2x˙2,2x˙3,2x˙4,2=u1u2u3u4+Φ1(x1,1,x1,2,κ1)Φ2(x2,1,x2,2,κ2)Φ3(x3,1,x3,2,κ3)Φ4(x4,1,x4,2,κ4)

整个一致性协议为:
u i = − ρ s i , 2 + f w i w i = − ( 1 + ρ s ) s i , 2 s i , 1 = ∑ j = 1 M a i j ( y i − y j ) + b i ( y i − r ) s i , 2 = x i , 2 − 1 ( d i + b i ) g i − 1 ( Θ i ) ( − ρ s i , 1 + ∑ j = 1 M a i j g j ( Θ j ) x j , 2 + b i r ˙ )

u i = ρ \red s i , 2 + f \blue w i \blue w i = ( 1 + ρ s ) \red s i , 2 \green s i , 1 = j = 1 M a i j ( y i y j ) + b i ( y i r ) \red s i , 2 = x i , 2 1 ( d i + b i ) g i 1 ( Θ i ) ( ρ \green s i , 1 + j = 1 M a i j g j ( Θ j ) x j , 2 + b i r ˙ )
ui=ρsi,2+fwiwi=(1+sρ)si,2si,1=j=1Maij(yiyj)+bi(yir)si,2=xi,2(di+bi)1gi1(Θi)(ρsi,1+j=1Maijgj(Θj)xj,2+bir˙)

转换成矩阵写法:
[ u 1 u 2 u 3 u 4 ] = − ρ [ s 1 , 2 s 2 , 2 s 3 , 2 s 4 , 2 ] + f [ w 1 w 2 w 3 w 4 ] [ w 1 w 2 w 3 w 4 ] = − ( 1 + ρ s ) [ s 1 , 2 s 2 , 2 s 3 , 2 s 4 , 2 ] [ s 1 , 1 s 2 , 1 s 3 , 1 s 4 , 1 ] = L ⋅ [ y 1 y 2 y 3 y 4 ] + [ b 1 ⋅ ( y 1 − r ) b 2 ⋅ ( y 2 − r ) b 3 ⋅ ( y 3 − r ) b 4 ⋅ ( y 4 − r ) ] = L ⋅ [ x 1 , 1 x 2 , 1 x 3 , 1 x 4 , 1 ] + [ b 1 b 2 b 3 b 4 ] [ x 1 , 1 − r x 2 , 1 − r x 3 , 1 − r x 4 , 1 − r ] [ s 1 , 2 s 2 , 2 s 3 , 2 s 4 , 2 ] = [ x 1 , 2 x 2 , 2 x 3 , 2 x 4 , 2 ] − [ 1 d 1 + b 1 ( − ρ s 1 , 1 + x j , 2 + b 1 r ˙ ) 1 d 2 + b 2 ( − ρ s 2 , 1 + x j , 2 + b 2 r ˙ ) 1 d 3 + b 3 1 d 4 + b 4 ]

[ u 1 u 2 u 3 u 4 ] = ρ [ s 1 , 2 s 2 , 2 s 3 , 2 s 4 , 2 ] + f [ w 1 w 2 w 3 w 4 ] [ w 1 w 2 w 3 w 4 ] = ( 1 + ρ s ) [ s 1 , 2 s 2 , 2 s 3 , 2 s 4 , 2 ] [ s 1 , 1 s 2 , 1 s 3 , 1 s 4 , 1 ] = L [ y 1 y 2 y 3 y 4 ] + [ b 1 ( y 1 r ) b 2 ( y 2 r ) b 3 ( y 3 r ) b 4 ( y 4 r ) ] = L [ x 1 , 1 x 2 , 1 x 3 , 1 x 4 , 1 ] + [ b 1 b 2 b 3 b 4 ] [ x 1 , 1 r x 2 , 1 r x 3 , 1 r x 4 , 1 r ] [ s 1 , 2 s 2 , 2 s 3 , 2 s 4 , 2 ] = [ x 1 , 2 x 2 , 2 x 3 , 2 x 4 , 2 ] [ 1 d 1 + b 1 ( ρ s 1 , 1 + x j , 2 + b 1 r ˙ ) 1 d 2 + b 2 ( ρ s 2 , 1 + x j , 2 + b 2 r ˙ ) 1 d 3 + b 3 1 d 4 + b 4 ]
u1u2u3u4w1w2w3w4s1,1s2,1s3,1s4,1s1,2s2,2s3,2s4,2=ρs1,2s2,2s3,2s4,2+fw1w2w3w4=(1+sρ)s1,2s2,2s3,2s4,2=Ly1y2y3y4+b1(y1r)b2(y2r)b3(y3r)b4(y4r)=Lx1,1x2,1x3,1x4,1+b1b2b3b4x1,1rx2,1rx3,1rx4,1r=x1,2x2,2x3,2x4,2d1+b11(ρs1,1+xj,2+b1r˙)d2+b21(ρs2,1+xj,2+b2r˙)d3+b31d4+b41

仿真部分也给出了干扰的表述方式:
Φ i ( x i , 1 , x i , 2 , κ i ) ≤ ∣ x i , 1 ∣ + ∣ x i , 2 ∣ + rand ( 5 )

Φ i ( x i , 1 , x i , 2 , κ i ) | x i , 1 | + | x i , 2 | + rand ( 5 )
Φi(xi,1,xi,2,κi)xi,1+xi,2+rand(5)

把两个公式合并一下(忽略转换矩阵的作用):
x ˙ i , 1 = x i , 2 x ˙ i , 2 = u i + Φ i ( x i , 1 , x i , 2 , κ i ) = u i + ∣ x i , 1 ∣ + ∣ x i , 2 ∣ + rand ( 5 ) = − ρ s i , 2 + f w i + ∣ x i , 1 ∣ + ∣ x i , 2 ∣ + rand ( 5 ) = − ρ s i , 2 + f [ − ( 1 + ρ s ) s i , 2 ] + ∣ x i , 1 ∣ + ∣ x i , 2 ∣ + rand ( 5 )

x ˙ i , 1 = x i , 2 x ˙ i , 2 = u i + Φ i ( x i , 1 , x i , 2 , κ i ) = u i + | x i , 1 | + | x i , 2 | + rand ( 5 ) = ρ s i , 2 + f w i + | x i , 1 | + | x i , 2 | + rand ( 5 ) = ρ s i , 2 + f [ ( 1 + ρ s ) s i , 2 ] + | x i , 1 | + | x i , 2 | + rand ( 5 )
x˙i,1x˙i,2=xi,2=ui+Φi(xi,1,xi,2,κi)=ui+xi,1+xi,2+rand(5)=ρsi,2+fwi+xi,1+xi,2+rand(5)=ρsi,2+f[(1+sρ)si,2]+xi,1+xi,2+rand(5)

Condition 1

Condition 2

Condition 3

Condition 4


此篇文章暂时已结束,欢迎感兴趣的各位交流学习~

如有需要,可私信或评论不明白的地方,我再接着更新~



转载:https://blog.csdn.net/weixin_36815313/article/details/117151654
查看评论
* 以上用户言论只代表其个人观点,不代表本网站的观点或立场