整理的算法模板合集: ACM模板
实际上是一个全新的精炼模板整合计划
G. Grisaia(灰色的果实好耶《灰色的果实(The Fruit of Grisaia)》)
Weblink
https://www.oj.swust.edu.cn/problem/show/2810
Problem
计算:
a n s = ∑ i = 1 n ∑ j = 1 i ( n m o d ( i × j ) ) ans =\sum^n_{i=1}\sum^i_{j=1} (n\ mod (i \times j)) ans=i=1∑nj=1∑i(n mod(i×j))
其中 T ≤ 5 , n ≤ 1 0 11 T\le 5, n\le 10^{11} T≤5,n≤1011
Solution
使用模的展开式将上述和式展开后,显然套路枚举 k = i × j k=i\times j k=i×j,由于 n ≤ 1 0 11 n\le10^{11} n≤1011,杜教筛即可。
筛出:
f ( x ) = x × d ( x ) g ( x ) = x × μ ( x ) f(x)=x\times d(x)\\g(x)=x \times \mu(x) f(x)=x×d(x)g(x)=x×μ(x)
然后整除分块即可。
Hint
注意 n ≤ 1 0 11 n\le10^{11} n≤1011,中间多处会爆 long long
,强转成 __int128
即可。
(因为这个wa了8发hhh,五颜六色的)
Code
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define ll __int128
const int N = 31644346;
int n, m;
int mu[N];
int primes[N], cnt;
int d[N];
int num[N];
unordered_map<int, ll> sum_mui;
unordered_map<int, ll> sum_dk;
bool vis[N];
int sum[N];
inline ll read()
{
register ll x = 0,f = 1;
char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c-48,c = getchar();
return x * f;
}
inline void print(ll x)
{
if(x < 10)
{
putchar(x + 48);
return;
}
print(x / 10), print(x % 10);
}
void init(int n)
{
vis[0] = vis[1] = 1;
mu[1] = d[1] = 1;
for(int i = 2; i <= n; ++ i) {
if(vis[i] == 0) {
primes[ ++ cnt] = i;
mu[i] = -1;
d[i] = 2 * i;
num[i] = 1;
}
for(int j = 1; j <= cnt && i * primes[j] <= n; ++ j) {
vis[i * primes[j]] = 1;
if(i % primes[j] == 0) {
mu[i * primes[j]] = 0;
num[i * primes[j]] = num[i] + 1;
d[i * primes[j]] = (ll)d[i] / num[i * primes[j]] * (num[i * primes[j]] + 1) * primes[j];
break;
}
mu[i * primes[j]] -= mu[i];
num[i * primes[j]] = 1;
d[i * primes[j]] = d[i] * d[primes[j]];
}
}
for(int i = 1; i <= n; ++ i) {
sum[i] = sum[i - 1] + mu[i] * i;
d[i] = d[i - 1] + d[i];
}
}
inline ll get_sum_mui(int x)
{
if(x <= N - 7) return sum[x];
if(sum_mui.find(x) != sum_mui.end()) return sum_mui[x];
ll ans = 1;
for(ll l = 2, r; l <= x; l = r + 1) {
r = x / (x / l);
ans -= (ll)(r - l + 1) * (l + r) / 2 * get_sum_mui(x / l);
}
return sum_mui[x] = ans;
}
inline ll get_sum_dk(ll x)
{
if(x <= N - 7) return d[x];
if(sum_dk.find(x) != sum_dk.end()) return sum_dk[x];
ll ans = x * (x + 1) / 2;
for(ll l = 2, r; l <= x; l = r + 1) {
r = x / (x / l);
ans -= (ll)(get_sum_mui(r) - get_sum_mui(l - 1)) * get_sum_dk(x / l);
}
return sum_dk[x] = ans;
}
ll cal(ll x)
{
ll limit = sqrt(x + 0.99);
ll more = limit * (limit + 1) * (2 * limit + 1) / 6;
return (get_sum_dk(x) + more) / 2;
}
void solve()
{
ll ans = (ll)n * n * (n + 1) / 2;
for(ll l = 1, r; l <= n; l = r + 1) {
r = n / (n / l);
//cout << "ok" << cal(r) - cal(l - 1) * (n / l) << endl;
ans -= (ll)(cal(r) - cal(l - 1)) * (n / l);
}
print(ans);
puts("");
}
signed main()
{
int t;
init(N - 7);
t = read();
while(t -- ) {
n = read();
solve();
}
return 0;
}
Code2
大佬的AC代码:
(比我的代码快了几十倍…还没看懂)
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef __int128 lll;
const int mod=1e9+7;
inline lll cal(lll l,lll r)
{
return (l+r)*(r-l+1)/2;
}
inline lll solve(ll up)//solve \sum_{i=1}^{n} up/i *i;
//显然只有i<=up时有贡献
{
// num++;
// if(num%10000==0) cout<<clock()<<endl;
lll res=0;
for(ll l=1,r;l<=up;l=r+1){
r=up/(up/l);
res=(res+up/l*cal(l,r));
}
return res;
}
inline void write(__int128 x)
{
if(x<0)
{
putchar('-');
x=-x;
}
if(x>9) write(x/10);
putchar(x%10+'0');
}
//lll help1[maxn];//solve f(n/1) f(n/2) f(n/3) f(n/\sqrt(n))
//lll help2[maxn];//solve 1 2 3 \sqrt{n}
const int maxn=21550000;
ll g[maxn];//n^(2/3) g(n)=\sum_{i|n} i
lll f[maxn];//sum_{i=1}^{n} [n/i]*i
ll ans[maxn/10];
bool valid[maxn];
int tot;
void get_prime(int n)
{
memset(valid,true,sizeof(valid));
tot=0;
g[1]=1;
for(int i=2;i<=n;++i){
if(valid[i]){
ans[++tot]=i;
g[i]=i+1;
}
for(int j=1;j<=tot && ans[j]*i<=n;++j){
valid[ans[j]*i]=false;
if(i%ans[j]==0){
//cout<<i<<" "<<ans[j]<<endl;
//if(i*ans[j]==4)cout<<i<<" "<<g[i]<<" "<<ans[j]<<endl;
int tp=1;
int ti=i;
while(ti%ans[j]==0){
tp*=ans[j];
ti/=ans[j];
}
tp*=ans[j];
g[i*ans[j]]=g[i]*ans[j]+(g[i]/((tp-1)/(ans[j]-1)));
break;
}
else g[i*ans[j]]=g[i]*g[ans[j]];
}
}
}
int main()
{
get_prime(maxn);
// for(int i=1;i<=30;++i) cout<<g[i]<<" ";
// cout<<endl;
f[0]=0;
for(int i=1;i<maxn;++i) f[i]=f[i-1]+g[i];
//cout<<clock()<<endl;
//cout<<tot<<endl;
//freopen("in.txt","r",stdin);
int t;
cin>>t;
while(t--)
{
ll n;
cin>>n;
lll ans1=0;
for(ll l=1,r;l<=n;l=r+1){
r=n/(n/l);
ll tp=n/l;
if(tp<maxn) ans1+=f[tp]*cal(l,r);
else ans1+=solve(tp)*cal(l,r);
}
// write(ans1);
// cout<<endl;
//cout<<clock()<<endl;
lll ans2=0;//i=j
for(ll i=1;i*i<=n;++i){
ll tp=i*i;
ans2+=n/tp*tp;
}
// write(ans2);
// cout<<endl;
ans1-=ans2;
//assert(ans1%2==0);
ans1/=2;
ans1+=ans2;
// write(ans1);
// cout<<endl;
ans1=((lll)n)*n*(n+1)/2-ans1;
write(ans1);
cout<<endl;
}
return 0;
}
转载:https://blog.csdn.net/weixin_45697774/article/details/117172503