飞道的博客

机器学习入门——简单线性回归

379人阅读  评论(0)

目录

1、建立一个数据集

2、看看适不适合用线性回归的模型(通过画图)

3、分割数据

4、导入模型

5、评估模型

【完整代码】





  
  1. # 加载数据分析常用库
  2. import pandas as pd
  3. import numpy as np
  4. import matplotlib.pyplot as plt
  5. % matplotlib inline

机器学习是一个很复杂又很广阔的概念,可以说是包罗万象的。从数据分析机器学习再到深度学习,这是一个不断进步和发展的过程。这里就通过一个很基础的入门项目,来演练一下机器学习的过程。

机器学习的本质其实就是通过训练集建立一个模型,而后可以通过这个模型实现对于特征的识别得出结果标签,而这个模型可以是多种多样的,简单线性回归模型只是其中的最基础最简单的一种模型。

 


1、建立一个数据集

(如果不规整的数据集,需要按照数据分析的流程进行一遍数据清洗,这里仅仅举个例子,就跳过数据分析这一步了)


  
  1. #首先我们先建立一个数据集,这也是之后用来训练和测试的数据
  2. #导入包,创建数据集
  3. from collections import OrderedDict
  4. import pandas as pd
  5. examDict={
  6. '学习时间':[ 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 1.75, 2.00, 2.25,
  7. 2.50, 2.75, 3.00, 3.25, 3.50, 4.00, 4.25, 4.50, 4.75, 5.00, 5.50],
  8. '分数': [ 10, 22, 13, 43, 20, 22, 33, 50, 62,
  9. 48, 55, 75, 62, 73, 81, 76, 64, 82, 90, 93]
  10. }
  11. examOrderDict=OrderedDict(examDict)
  12. exam=pd.DataFrame(examOrderDict)
  13. #看看数据集长什么样
  14. exam.head()

如果不用模块collections对字典对象中元素的排序,那么数据将会是:


  
  1. #首先我们先建立一个数据集,这也是之后用来训练和测试的数据
  2. #导入包,创建数据集
  3. #python中的字典是无序的,因为它是按照hash来存储的;
  4. #但是python中有个模块collections(英文,收集、集合),里面自带了一个子类OrderedDict,实现了对字典对象中元素的排序。
  5. from collections import OrderedDict
  6. import pandas as pd
  7. examDict={
  8. '学习时间':[ 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 1.75, 2.00, 2.25,
  9. 2.50, 2.75, 3.00, 3.25, 3.50, 4.00, 4.25, 4.50, 4.75, 5.00, 5.50],
  10. '分数': [ 10, 22, 13, 43, 20, 22, 33, 50, 62,
  11. 48, 55, 75, 62, 73, 81, 76, 64, 82, 90, 93]
  12. }
  13. #examOrderDict=OrderedDict(examDict)
  14. exam=pd.DataFrame(examDict)
  15. #看看数据集长什么样
  16. exam

 

 


2、看看适不适合用线性回归的模型(通过画图)

#接下来我们先大致看一下特征标签之间的关系
#然后来判断是否适合使用简单线性回归模型
#如果不适合,就换用其他模型
#这里是举例,肯定可以用的
#特征学习时间标签分数
#用散点图看一下大致情况


  
  1. #从dataframe中把标签和特征导出来
  2. exam_X = exam[ '学习时间']
  3. exam_Y = exam[ '分数']
  4. #绘制散点图
  5. #导入包
  6. import matplotlib.pyplot as plt
  7. #绘制散点图
  8. plt.scatter(exam_X, exam_Y, color = 'green')
  9. #设定X,Y轴标签和title
  10. plt.ylabel( 'scores')
  11. plt.xlabel( 'times')
  12. plt.title( 'exam data')
  13. plt.show()


3分割数据

这里不能把这个数据集都作为训练数据集,那样的话就没有数据来测试一下我们的模型好坏了,所以需要把数据集分割一下,要用到一个函数。


  
  1. #train_test_split函数可以在样本数据集中随机的选取测试集与训练集
  2. #比例可以自己指定
  3. #第一个参数为特征,第二个参数为标签
  4. from sklearn.model_selection import train_test_split
  5. X_train, X_test, Y_train, Y_test = train_test_split(exam_X,
  6. exam_Y,
  7. train_size = 0.8)
  8. #这里可以简单的看一下分割后的结果
  9. X_train.head()
  10. X_train.shape
  11. #可以发现训练集是16行一列的数据,测试集是四行一列,符合切分比例


4导入模型


  
  1. #首先,改变一下数组的形状
  2. X_train = X_train.values.reshape( -1, 1)
  3. X_test = X_test.values.reshape( -1, 1)
  4. #从skl中导入线性回归的模型
  5. from sklearn.linear_model import LinearRegression
  6. #创建一个模型
  7. model = LinearRegression()
  8. #训练一下
  9. model.fit(X_train, Y_train)

 


  
  1. #因为线性回归一般方程为y = a+bx
  2. #b为斜率,a为截距
  3. #截距用intercept_方法获得
  4. #斜率用model.coef_方法获得
  5. a = model.intercept_
  6. b = model.coef_
  7. a = float(a)
  8. b = float(b)
  9. print( '该模型的简单线性回归方程为y = {} + {} * x'.format(a, b))

 


5评估模型

我们得到的方程是这些点的最佳拟合曲线,那么我们首先看一下这个曲线的具体位置。


  
  1. import matplotlib.pyplot as plt
  2. #绘制散点图
  3. plt.scatter(exam_X, exam_Y, color = 'green', label = 'train data')
  4. #设定X,Y轴标签和title
  5. plt.ylabel( 'scores')
  6. plt.xlabel( 'times')
  7. #绘制最佳拟合曲线
  8. Y_train_pred = model.predict(X_train)
  9. plt.plot(X_train, Y_train_pred, color = 'black', label = 'best line')
  10. #来个图例
  11. plt.legend(loc = 2)
  12. plt.show()

 

但是仅仅通过拟合曲线我们是无法准确判断模型的拟合程度的,我们还需要更加具体的评判方式。
在线性回归中,我们通过决定系数 R^{2} 来判别,这个数值越接近于1,说明模型的拟合度越好,通过测试数据来判断一下模型的拟合程度。

model.score(X_test, Y_test)

 

 

【完整代码】


  
  1. #首先我们先建立一个数据集,这也是之后用来训练和测试的数据
  2. #导入包,创建数据集
  3. from collections import OrderedDict
  4. import pandas as pd
  5. examDict={
  6. '学习时间':[ 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 1.75, 2.00, 2.25,
  7. 2.50, 2.75, 3.00, 3.25, 3.50, 4.00, 4.25, 4.50, 4.75, 5.00, 5.50],
  8. '分数': [ 10, 22, 13, 43, 20, 22, 33, 50, 62,
  9. 48, 55, 75, 62, 73, 81, 76, 64, 82, 90, 93]
  10. }
  11. examOrderDict=OrderedDict(examDict)
  12. exam=pd.DataFrame(examOrderDict)
  13. ############################################
  14. #从dataframe中把标签和特征导出来
  15. exam_X = exam[ '学习时间']
  16. exam_Y = exam[ '分数']
  17. #绘制散点图
  18. #导入包
  19. import matplotlib.pyplot as plt
  20. #train_test_split函数可以在样本数据集中随机的选取测试集与训练集
  21. #比例可以自己指定
  22. #第一个参数为特征,第二个参数为标签
  23. from sklearn.model_selection import train_test_split
  24. X_train, X_test, Y_train, Y_test = train_test_split(exam_X,
  25. exam_Y,
  26. train_size = 0.8)
  27. #首先,改变一下数组的形状
  28. X_train = X_train.values.reshape( -1, 1)
  29. X_test = X_test.values.reshape( -1, 1)
  30. #从skl中导入线性回归的模型
  31. from sklearn.linear_model import LinearRegression
  32. #创建一个模型
  33. model = LinearRegression()
  34. #训练一下
  35. model.fit(X_train, Y_train)
  36. #因为线性回归一般方程为y = a+bx
  37. #b为斜率,a为截距
  38. #截距用intercept_方法获得
  39. #斜率用model.coef_方法获得
  40. a = model.intercept_
  41. b = model.coef_
  42. import matplotlib.pyplot as plt
  43. #绘制散点图
  44. plt.scatter(exam_X, exam_Y, color = 'green', label = 'train data')
  45. #设定X,Y轴标签和title
  46. plt.ylabel( 'scores')
  47. plt.xlabel( 'times')
  48. #绘制最佳拟合曲线
  49. Y_train_pred = model.predict(X_train)
  50. plt.plot(X_train, Y_train_pred, color = 'black', label = 'best line')
  51. #来个图例
  52. plt.legend(loc = 2)
  53. plt.show()

 

 


转载:https://blog.csdn.net/qq_38689263/article/details/116139630
查看评论
* 以上用户言论只代表其个人观点,不代表本网站的观点或立场