使用 OpenCV破解腾讯防水墙滑动验证码
戳这里→康康你手机号在过多少网站注册过!!!
友情推荐:新一代安全短信
* 验证码地址:https://007.qq.com/online.html
* 使用OpenCv模板匹配
* 成功率90%左右
* Java + Selenium + OpenCV
产品样例
来吧!展示!
注意!!!
· 在模拟滑动时不能按照相同速度或者过快的速度滑动,需要向人滑动时一样先快后慢,这样才不容易被识别。
模拟滑动代码↓↓↓
/**
* 模拟人工移动
* @param driver
* @param element页面滑块
* @param distance需要移动距离
*/
public static void move(WebDriver driver, WebElement element, int distance) throws InterruptedException {
int randomTime = 0;
if (distance > 90) {
randomTime = 250;
} else if (distance > 80 && distance <= 90) {
randomTime = 150;
}
List<Integer> track = getMoveTrack(distance - 2);
int moveY = 1;
try {
Actions actions = new Actions(driver);
actions.clickAndHold(element).perform();
Thread.sleep(200);
for (int i = 0; i < track.size(); i++) {
actions.moveByOffset(track.get(i), moveY).perform();
Thread.sleep(new Random().nextInt(300) + randomTime);
}
Thread.sleep(200);
actions.release(element).perform();
} catch (Exception e) {
e.printStackTrace();
}
}
/**
* 根据距离获取滑动轨迹
* @param distance需要移动的距离
* @return
*/
public static List<Integer> getMoveTrack(int distance) {
List<Integer> track = new ArrayList<>();// 移动轨迹
Random random = new Random();
int current = 0;// 已经移动的距离
int mid = (int) distance * 4 / 5;// 减速阈值
int a = 0;
int move = 0;// 每次循环移动的距离
while (true) {
a = random.nextInt(10);
if (current <= mid) {
move += a;// 不断加速
} else {
move -= a;
}
if ((current + move) < distance) {
track.add(move);
} else {
track.add(distance - current);
break;
}
current += move;
}
return track;
}
看操作,no bb,直接上代码
private final String INDEX_URL = "https://007.qq.com/online.html?ADTAG=index.head";
private void seleniumTest() {
ChromeDriverManager manager = ChromeDriverManager.getInstance();
int status = -1;
try {
WebDriver driver = manager.getDriver();
driver.get(INDEX_URL);
driver.manage().window().maximize(); // 设置浏览器窗口最大化
Thread.sleep(10000);
driver.findElement(By.className("wp-onb-tit")).findElements(By.tagName("a")).get(1).click();
Thread.sleep(500);
// 点击出现滑动图
waitWebElement(driver, By.id("code"), 500).click();
Thread.sleep(100);
// 获取到验证区域
driver.switchTo().frame(waitWebElement(driver, By.id("tcaptcha_iframe"), 500));
Thread.sleep(100);
// 获取滑动按钮
WebElement moveElemet = waitWebElement(driver, By.id("tcaptcha_drag_button"), 500);
Thread.sleep(100);
// 获取带阴影的背景图
String bgUrl = waitWebElement(driver, By.id("slideBg"), 500).getAttribute("src");
Thread.sleep(100);
// 获取带阴影的小图
String sUrl = waitWebElement(driver, By.id("slideBlock"), 500).getAttribute("src");
Thread.sleep(100);
// 获取高度
String topStr = waitWebElement(driver, By.id("slideBlock"), 500).getAttribute("style").substring(32, 36);
int top = Integer.parseInt(topStr.substring(0, topStr.indexOf("p"))) * 2;
Thread.sleep(100);
// 计算移动距离
int distance = (int) Double.parseDouble(getTencentDistance(bgUrl, sUrl, top));
// 滑动
move(driver, moveElemet, distance);
Thread.sleep(5000);
} catch (Exception e) {
e.printStackTrace();
} finally {
manager.closeDriver(status);
}
}
/**
* 获取腾讯验证滑动距离
*
* @return
*/
public static String dllPath = "C://chrome//opencv_java440.dll";
public String getTencentDistance(String bUrl, String sUrl, int top) {
System.load(dllPath);
File bFile = new File("C:/qq_b.jpg");
File sFile = new File("C:/qq_s.jpg");
try {
FileUtils.copyURLToFile(new URL(bUrl), bFile);
FileUtils.copyURLToFile(new URL(sUrl), sFile);
BufferedImage bgBI = ImageIO.read(bFile);
BufferedImage sBI = ImageIO.read(sFile);
// 裁剪
bgBI = bgBI.getSubimage(360, top, bgBI.getWidth() - 370, sBI.getHeight());
ImageIO.write(bgBI, "png", bFile);
Mat s_mat = Imgcodecs.imread(sFile.getPath());
Mat b_mat = Imgcodecs.imread(bFile.getPath());
// 转灰度图像
Mat s_newMat = new Mat();
Imgproc.cvtColor(s_mat, s_newMat, Imgproc.COLOR_BGR2GRAY);
// 二值化图像
binaryzation(s_newMat);
Imgcodecs.imwrite(sFile.getPath(), s_newMat);
int result_rows = b_mat.rows() - s_mat.rows() + 1;
int result_cols = b_mat.cols() - s_mat.cols() + 1;
Mat g_result = new Mat(result_rows, result_cols, CvType.CV_32FC1);
Imgproc.matchTemplate(b_mat, s_mat, g_result, Imgproc.TM_SQDIFF); // 归一化平方差匹配法
// 归一化相关匹配法
Core.normalize(g_result, g_result, 0, 1, Core.NORM_MINMAX, -1, new Mat());
Point matchLocation = new Point();
MinMaxLocResult mmlr = Core.minMaxLoc(g_result);
matchLocation = mmlr.maxLoc; // 此处使用maxLoc还是minLoc取决于使用的匹配算法
Imgproc.rectangle(b_mat, matchLocation,
new Point(matchLocation.x + s_mat.cols(), matchLocation.y + s_mat.rows()), new Scalar(0, 0, 0, 0));
return "" + ((matchLocation.x + s_mat.cols() + 360 - sBI.getWidth() - 46) / 2);
} catch (Throwable e) {
e.printStackTrace();
return null;
} finally {
bFile.delete();
sFile.delete();
}
}
/**
*
* @param mat
* 二值化图像
*/
public static void binaryzation(Mat mat) {
int BLACK = 0;
int WHITE = 255;
int ucThre = 0, ucThre_new = 127;
int nBack_count, nData_count;
int nBack_sum, nData_sum;
int nValue;
int i, j;
int width = mat.width(), height = mat.height();
// 寻找最佳的阙值
while (ucThre != ucThre_new) {
nBack_sum = nData_sum = 0;
nBack_count = nData_count = 0;
for (j = 0; j < height; ++j) {
for (i = 0; i < width; i++) {
nValue = (int) mat.get(j, i)[0];
if (nValue > ucThre_new) {
nBack_sum += nValue;
nBack_count++;
} else {
nData_sum += nValue;
nData_count++;
}
}
}
nBack_sum = nBack_sum / nBack_count;
nData_sum = nData_sum / nData_count;
ucThre = ucThre_new;
ucThre_new = (nBack_sum + nData_sum) / 2;
}
// 二值化处理
int nBlack = 0;
int nWhite = 0;
for (j = 0; j < height; ++j) {
for (i = 0; i < width; ++i) {
nValue = (int) mat.get(j, i)[0];
if (nValue > ucThre_new) {
mat.put(j, i, WHITE);
nWhite++;
} else {
mat.put(j, i, BLACK);
nBlack++;
}
}
}
// 确保白底黑字
if (nBlack > nWhite) {
for (j = 0; j < height; ++j) {
for (i = 0; i < width; ++i) {
nValue = (int) (mat.get(j, i)[0]);
if (nValue == 0) {
mat.put(j, i, WHITE);
} else {
mat.put(j, i, BLACK);
}
}
}
}
}
// 延时加载
private static WebElement waitWebElement(WebDriver driver, By by, int count) throws Exception {
WebElement webElement = null;
boolean isWait = false;
for (int k = 0; k < count; k++) {
try {
webElement = driver.findElement(by);
if (isWait)
System.out.println(" ok!");
return webElement;
} catch (org.openqa.selenium.NoSuchElementException ex) {
isWait = true;
if (k == 0)
System.out.print("waitWebElement(" + by.toString() + ")");
else
System.out.print(".");
Thread.sleep(50);
}
}
if (isWait)
System.out.println(" outTime!");
return null;
}
谷歌已经宣布退出图形验证码服务,为何国内各种奇葩验证方式层出不穷,安全性到底如何?
《腾讯防水墙滑动拼图验证码》
《百度旋转图片验证码》
《网易易盾滑动拼图验证码》
《顶象区域面积点选验证码》
《顶象滑动拼图验证码》
《极验滑动拼图验证码》
《使用深度学习来破解 captcha 验证码》
戳这里→康康你手机号在过多少网站注册过!!!
友情推荐:新一代安全短信
转载:https://blog.csdn.net/weixin_44549063/article/details/112192478
查看评论