作为国内最早和OpenCV建立合作的公司,OPEN AI LAB配合本次OpenCV V4.5.0的迭代,将集成到OpenCV的Tengine也同步进行了升级,做出了深度的优化,极大的提升了稳定性与效率。作为OpenCV项目的负责人,OPEN AI LAB 的高级软件工程师——李琦老师为大家详细的分享一下为什么OpenCV选择将Tengine作为DNN ARM后端?以及如何为DNN添加Tengine后端。【注:本文图片中部分代码已更新,有任何疑问请加入Tengine开发者社群(文末扫码加入开发者QQ群)】
李琦:“很荣幸能加入OPEN AI LAB , 遇到一些很棒的人和事,这样层层的荣幸叠加,让我有幸能遇到OpenCV中国团队,并且能借此将Tengine和OpenCV结合起来。我这篇将文章围绕OpenCV里面集成Tengine的这项功能的开发流程来讲。”
Tengine是OPEN AI LAB(开放智能)的开源边缘AI推理框架,本身是聚焦在端侧的推理,针对ARM不同的核都有不同的汇编优化实现,在现在国内推理框架层出不穷的时代,Tengine还能稳稳的守住性能王者的位置,也是得益于这一块的优化能力。大家肯定也知道,OpenCV是宇宙最强的计算机视觉库,在神经网络大火的年代也是很早就做了很全的推理的实现,而且接口简单,对老用户来说极其方便,但是在ARM上的性能确实也是还有很大的优化空间。在这样的一个前提下,强强联合,便产生了这样的一个需求。
实现的总体方案是先解决性能的大头,神经网络推理性能耗时八成是在卷积的计算,Tengine在卷积的实现上有采用了高效的手工汇编优化,所以就按照将卷积移植到OpenCV的逻辑来做,如下图示:
这里主要有以下两个问题:
- 如何在OpenCV的卷积运算的时候调用Tengine?这里面包括了OpenCV的图调用逻辑、卷积的调用逻辑、卷积的参数传递、数据排布等等兼容性问题;
- 如何将Tengine顺利嫁接到OpenCV上?仅仅移植卷积实现,还是移植整个Tengine的架构?编译如何无缝链接?
在方案的早期基本就确定了将Tengine作为整体嵌入,编译直接对接,卷积计算以整个图的方式被调用,并以单层构图的方式运行,逻辑如下图示:
这种方式将Tengine作为一个外挂的库动态编译到OpenCV中,并且被调用执行,需要完成以下工作来实现:
-
OpenCV的集成编译。此步骤需要在OpenCV编译的时候将Tengine编译进去,涉及到了解OpenCV的编译以及Tengine的编译和调用。
-
卷积计算图的调用。要了解OpenCV的单层计算的参数传递和流程,保证能顺利调用Tengine进行计算。
-
完整的测试。包括OpenCV的CI测试和性能测试。
集成编译
下图是集成编译的调用关系。
实际代码的修改和解释包括:
a. 主CMakeList.txt
b. opencv/cmake/OpenCVFindTengine.cmake
set(OPENCV_LIBTENGINE_ROOT_DIR "" CACHE PATH "Where to look for additional OpenCV modules (can be ;-separated list of paths)") ## 设置用户可配置Tengine的目录。
IF(OPENCV_LIBTENGINE_ROOT_DIR) ## 如果配置了Tengine的目录,使能对应的开关
MESSAGE(STATUS "TENGINE:-- Set tengine lib dir by user ")
SET(Tengine_FOUND ON)
set(BUILD_TENGINE OFF)
SET(Tengine_INCLUDE_DIR ${
OPENCV_LIBTENGINE_ROOT_DIR}/include)
SET(Tengine_LIB ${
OPENCV_LIBTENGINE_ROOT_DIR}/lib/libtengine.a)
ELSE() ## 如果没有配置目录,就会调用到tengine.cmake的脚本去下载tengine源码,并编译
MESSAGE(STATUS "TENGINE:-- Auto download Tengine source code. ")
include("${OpenCV_SOURCE_DIR}/3rdparty/libtengine/tengine.cmake")
ENDIF()
IF(NOT Tengine_LIB) ## 对库文件的检测,如果没有,会报异常,并关掉Tengine
SET(Tengine_FOUND OFF)
MESSAGE(STATUS "#### Could not find Tengine lib. Turning Tengine_FOUND off")
ENDIF()
IF (Tengine_FOUND) ## 不管是配置了库,还是自动下载源码了,此处都会配置相关的头文件和库文件路径
MESSAGE(STATUS "Found Tengine include: ${Tengine_INCLUDE_DIR}")
MESSAGE(STATUS "Found Tengine libraries: ${Tengine_LIB}")
set(HAVE_TENGINE 1)
set(TENGINE_LIBRARIES ${
Tengine_LIB})
set(TENGINE_INCLUDE_DIRS ${
Tengine_INCLUDE_DIR})
ENDIF (Tengine_FOUND)
MESSAGE(STATUS "Tengine include is:" ${
Tengine_INCLUDE_DIR})
MESSAGE(STATUS "Tengine library is:" ${
Tengine_LIB})
MARK_AS_ADVANCED(
Tengine_INCLUDE_DIR
Tengine_LIB
Tengine
)
c. opencv/3rdparty/libtengine/tengine.cmake
SET(TENGINE_VERSION "tengine-opencv")
SET(OCV_TENGINE_DSTDIRECTORY ${
OpenCV_BINARY_DIR}/3rdparty/libtengine)
SET(DEFAULT_OPENCV_TENGINE_SOURCE_PATH ${
OCV_TENGINE_DSTDIRECTORY}/Tengine-${
TENGINE_VERSION})
IF(EXISTS ${
DEFAULT_OPENCV_TENGINE_SOURCE_PATH})
## 如果存在Tengine已经下载好的源码,那么不会重复下载,自动编译即可
MESSAGE(STATUS "Tengine is exist already .")
SET(Tengine_FOUND ON)
set(BUILD_TENGINE ON)
ELSE()
SET(OCV_TENGINE_FILENAME "${TENGINE_VERSION}.zip") #name2
SET(OCV_TENGINE_URL "https://github.com/OAID/Tengine/archive/") #url2
SET(tengine_md5sum 9c80d91dc8413911522ec80cde013ae2) #md5sum2
MESSAGE(STATUS "**** TENGINE DOWNLOAD BEGIN ****")
ocv_download(FILENAME ${
OCV_TENGINE_FILENAME} ## 下载Tengine源码
HASH ${
tengine_md5sum}
URL
"${OPENCV_TENGINE_URL}"
"$ENV{OPENCV_TENGINE_URL}"
"${OCV_TENGINE_URL}"
DESTINATION_DIR ${
OCV_TENGINE_DSTDIRECTORY}
ID TENGINE
STATUS res
UNPACK RELATIVE_URL)
if (NOT res) ## 下载不成功,关掉TENGINE
MESSAGE(STATUS "TENGINE DOWNLOAD FAILED .Turning Tengine_FOUND off.")
SET(Tengine_FOUND OFF)
else ()
MESSAGE(STATUS "TENGINE DOWNLOAD success . ")
SET(Tengine_FOUND ON)
set(BUILD_TENGINE ON)
endif()
ENDIF()
if (BUILD_TENGINE)
set(HAVE_TENGINE 1)
# android system
if(ANDROID) ## 配置android系统下需要传递给tengine的参数,是arm32还是arm64
if(${
ANDROID_ABI} STREQUAL "armeabi-v7a")
set(CONFIG_ARCH_ARM32 ON)
elseif(${
ANDROID_ABI} STREQUAL "arm64-v8a")
set(CONFIG_ARCH_ARM64 ON)
endif()
endif()
# linux system ## 配置linux系统下需要传递给tengine的参数,是arm32还是arm64
if(CMAKE_SYSTEM_PROCESSOR STREQUAL arm)
set(CONFIG_ARCH_ARM32 ON)
elseif(CMAKE_SYSTEM_PROCESSOR STREQUAL aarch64) ## AARCH64
set(CONFIG_ARCH_ARM64 ON)
endif()
SET(DEFAULT_OPENCV_TENGINE_SOURCE_PATH ${
OCV_TENGINE_DSTDIRECTORY}/Tengine-${
TENGINE_VERSION})
set(BUILT_IN_OPENCV ON) ## set for tengine compile discern.
set(Tengine_INCLUDE_DIR ${
DEFAULT_OPENCV_TENGINE_SOURCE_PATH}/core/include)
set(Tengine_LIB ${
CMAKE_BINARY_DIR}/lib/${
ANDROID_ABI}/libtengine.a)
if ( IS_DIRECTORY ${
DEFAULT_OPENCV_TENGINE_SOURCE_PATH}) ## 添加编译Tengine
add_subdirectory("${DEFAULT_OPENCV_TENGINE_SOURCE_PATH}" ${
OCV_TENGINE_DSTDIRECTORY}/build)
endif()
endif()
d. modules/dnn/CMakeLists.txt
完成如上修改基本上就达到了可以直接从OpenCV中调用Tengine,自动下载Tengine并且编译好给后面卷积计算的调用和链接。
卷积推理的调用
关于卷积的计算调用流程如下:
看上图就会明白,如果需要修改卷积最底层的实现,最终需要修改和了解的是接口:cv::dnn::ConvolutionLayerImpl::forward。该接口的实现是在文件convolution_layer.cpp 中。
实际上,在该接口中调用Tengine还需要了解卷积计算需要的一些参数,以下是实际调用的参数传递过程:
bool tengine_ret = tengine_forward(input_, inch, ngroups, in_h, in_w, ## 输入的数据和尺寸
output_, out_b, outch, out_h, out_w, ## 输出的数据和尺寸
kernel_, kernel_size.size(), kernel.height, kernel.width, ##输入的参数和尺寸
teg_bias, stride.height, stride.width,
pad.height, pad.width, dilation.height, dilation.width,
weightsMat.step1(), padMode);
详细实现如下:
// 添加头文件
#ifdef HAVE_TENGINE
#include "../tengine4dnn/include/tengine_graph_convolution.hpp"
#endif
#ifdef HAVE_TENGINE
int inch = inputs[0].size[1]; // inch
int in_h = inputs[0].size[2]; // in_h
int in_w = inputs[0].size[3]; // in_w
int out_b = outputs[0].size[0]; // out batch size
int outch = outputs[0].size[1]; // outch
int out_h = outputs[0].size[2]; // out_h
int out_w = outputs[0].size[3]; // out_w
float *input_ = inputs[0].ptr<float>();
float *output_ = outputs[0].ptr<float>();
float *kernel_ = weightsMat.ptr<float>();
float *teg_bias = &biasvec[0];
## 调用tengine的forward,所有的参数都在该函数传递进去
bool tengine_ret = tengine_forward(input_, inch, ngroups, in_h, in_w,
output_, out_b, outch, out_h, out_w,
kernel_, kernel_size.size(), kernel.height, kernel.width,
teg_bias, stride.height, stride.width,
pad.height, pad.width, dilation.height, dilation.width,
weightsMat.step1(), padMode);
/* activation */
if((true == tengine_ret) && activ )
## 如果Tengine推理成功且带有activation的实现,则会调用OpenCV去进行activation的计算
{
int out_cstep = out_h * out_w; // out_cstep
ParallelConv::run(inputs[0], outputs[0], weightsMat, biasvec, reluslope,
kernel_size, strides, pads_begin, pads_end, dilations, activ.get(), ngroups, nstripes);
ActivationLayer* activ_ = activ.get();
activ_->forwardSlice(output_, output_, out_cstep, out_cstep, 0, outch);
}
if(false == tengine_ret) ## 如果使用tengine推理失败,会自动调用OpenCV原始的实现
#endif
{
int nstripes = std::max(getNumThreads(), 1);
ParallelConv::run(inputs[0], outputs[0], weightsMat, biasvec, reluslope,
kernel_size, strides, pads_begin, pads_end, dilations, activ.get(), ngroups, nstripes);
}
}
上面就是将Tengine集成进OpenCV的最主要两大块工作的介绍,实际上还有更多的技术细节此处没有涉及到。比如**Tengine里面怎么实现单层的卷积计算,怎么能完全复用OpenCV传递过来的数据地址,而不做重复的数据拷贝,性能的提升主要原因,在编译成功Tengine的库之后怎么能在DNN模块里面调用到Tengine的接口,OpenCV里面自动下载第三方的库是怎么实现的,有没有其他路径,每个convolution都创建一遍图对性能不会有很大的损耗吗?CI测试等等。**由于篇幅有限,此处不做介绍,这些将会在后续的技术文章中一一介绍。
快加入Tengine技术群,来和我们聊一聊吧~
转载:https://blog.csdn.net/weixin_43476455/article/details/109484661