飞道的博客

jdk1.8HashMap源码解析(包含get,put方法)

429人阅读  评论(0)

一、基础知识

说实话,写文章是会上瘾的,就好像小时候去游戏厅投了一个币之后,忍不住想买十个一样。自从上次笔者写了Jdk1.7HashMap与ConcurrentHashMap源码解析之后,就一直手痒想写jdk1.8的,于是就有了这篇文章。

1.1单向、双向链表结构

Jdk1.8HashMap中的TreeNode类不止有红黑树的属性parent、left、right、red,还同时存在prev和next属性。所以TreeNode即是红黑树,也是双向链表。不知道链表数据结构的读者可以自行百度,也可以看笔者之前的文章:Jdk1.7HashMap与ConcurrentHashMap源码解析(put,get详解)

1.2二叉搜索树和红黑树

你以为jdk1.8的HashMap仅由数组和链表组成?Too young too simple。你以为红黑树很难?其实就是升级版的二叉搜索树而已。啥,你连二叉搜索树都不知道?这篇文章也许能帮助你,JAVA实现二叉搜索树和红黑树

二、HashMap源码详解

2.1大致结构

2.2属性

默认加载因子,用于扩容

 static final float DEFAULT_LOAD_FACTOR = 0.75f;

最外层数组,jdk1.7是Entry<K,V>[]

transient Node<K,V>[] table;

table的默认初始化容量,值16

static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;

最小树化容量,如果在tab[i]需要树化时,table.length<64优先选择扩容

static final int MIN_TREEIFY_CAPACITY = 64;

扩容红黑树时拆分链表解除树化的长度临界值

static final int UNTREEIFY_THRESHOLD = 6;

2.3无参构造

和JDK1.7不同,JDK1.8的无参构造没有调用有参构造,而只是初始花了加载因子

	public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }

2.4put方法

2.4.1put方法

	public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

2.4.2hash方法,计算hash

计算hash,想较于JDK1.7一系列位移异或操作简单了不少

	static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }

2.4.3putVal方法

onlyIfAbsent:如果为true在插入相同的key时不会替换value。
evict:如果创建map时调用,evict为false。

	final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        //如果table未初始化,则先初始化
        if ((tab = table) == null || (n = tab.length) == 0)
        	//resize方法也可以进行扩容,详见2.4.7
            n = (tab = resize()).length;
        //计算插入数组的下标i,并判断tab[i]是否为空
        //如果tab[i]为空直接插
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        //如果tab[i]不为空
        else {
            Node<K,V> e; K k;
            //三种情况
            //情况一:tab[i]的key和要插入的key相等
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                //获取旧的Node
                e = p;
            //情况二:tab[i]的位置是一颗红黑树
            else if (p instanceof TreeNode)
            	//插红黑树,见2.4.4
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            //情况三:tab[i]的位置为链表
            else {
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        //如果tab[i]位置的链表已经有8个结点了,此时加上新插入的结点一共9个
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        	//树化,将链表转化为红黑树,见2.4.5
                            treeifyBin(tab, hash);
                        break;
                    }
                    //和情况一一样,如果key重复,获取旧Node
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        if (++size > threshold)
        	//详见2.4.7
            resize();
        afterNodeInsertion(evict);
        return null;
    }

2.4.4putTreeVal方法,现有红黑树插入

final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,int h, K k, V v) {
        Class<?> kc = null;
        boolean searched = false;
        TreeNode<K,V> root = (parent != null) ? root() : this;
        //遍历找插入位置的父结点,不解释
        for (TreeNode<K,V> p = root;;) {
            int dir, ph; K pk;
            if ((ph = p.hash) > h)
                dir = -1;
            else if (ph < h)
                dir = 1;
            else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                return p;
            else if ((kc == null &&
                      (kc = comparableClassFor(k)) == null) ||
                     (dir = compareComparables(kc, k, pk)) == 0) {
                if (!searched) {
                    TreeNode<K,V> q, ch;
                    searched = true;
                    if (((ch = p.left) != null &&
                         (q = ch.find(h, k, kc)) != null) ||
                        ((ch = p.right) != null &&
                         (q = ch.find(h, k, kc)) != null))
                        return q;
                }
                dir = tieBreakOrder(k, pk);
            }

            TreeNode<K,V> xp = p;
            if ((p = (dir <= 0) ? p.left : p.right) == null) {
                Node<K,V> xpn = xp.next;
                TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
                if (dir <= 0)
                    xp.left = x;
                else
                    xp.right = x;
                xp.next = x;
                x.parent = x.prev = xp;
                if (xpn != null)
                    ((TreeNode<K,V>)xpn).prev = x;
                //和treeify中的moveRootToFront,balanceInsertion方法作用一样,不解释
                moveRootToFront(tab, balanceInsertion(root, x));
                return null;
            }
        }
    }

2.4.5treeifyBin方法,单向链表转双向链表

	final void treeifyBin(Node<K,V>[] tab, int hash) {
        int n, index; Node<K,V> e;
        //万一Node数组还没有初始化,先初始化
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
            resize();
        //如果tab[i]位置的Node不为空
        else if ((e = tab[index = (n - 1) & hash]) != null) {
            TreeNode<K,V> hd = null, tl = null;
            do {
            	//将Node转化为TreeNode
            	//TreeNode有parent,left,right,red,prev,next6个属性,这里只设置了prev和next
            	//实际上是先把单向链表转化为双向链表,真正生成红黑树的逻辑还在后面
                TreeNode<K,V> p = replacementTreeNode(e, null);
                if (tl == null)
                    hd = p;
                else {
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
            if ((tab[index] = hd) != null)
            	//Node开始转化为红黑树,见2.4.6
                hd.treeify(tab);
        }
    }

2.4.6treeify方法,双向链表转红黑树

	final void treeify(Node<K,V>[] tab) {
		//声明根节点
        TreeNode<K,V> root = null;
        //遍历双向链表
        for (TreeNode<K,V> x = this, next; x != null; x = next) {
        	//获取链表下一个结点
            next = (TreeNode<K,V>)x.next;
            //现将红黑树左右结点置空
            x.left = x.right = null;
            //如果跟结点为空,设置跟结点
            if (root == null) 
                x.parent = null;
                x.red = false;
                root = x;
            }
            //根节点不为空
            else {
                K k = x.key;
                int h = x.hash;
                Class<?> kc = null;
                //遍历红黑树,找到应该插入的位置
                for (TreeNode<K,V> p = root;;) {
                	//下面的代码不详细解释,相当于二叉搜索树寻找要插入结点的父结点
                	//比较方式为hash值得大小比较
                    int dir, ph;
                    K pk = p.key;
                    if ((ph = p.hash) > h)
                        dir = -1;
                    else if (ph < h)
                        dir = 1;
                    //如果两个结点的hash值相等,进一步用compareComparables比较
                    else if ((kc == null &&
                              (kc = comparableClassFor(k)) == null) ||
                             (dir = compareComparables(kc, k, pk)) == 0)
                        //如果还是相等,用类名,hashCode,identityHashCode等进行比较
                        dir = tieBreakOrder(k, pk);

                    TreeNode<K,V> xp = p;
                    if ((p = (dir <= 0) ? p.left : p.right) == null) {
                        x.parent = xp;
                        if (dir <= 0)
                            xp.left = x;
                        else
                            xp.right = x;
                        //调色,不详细介绍,熟悉红黑树的插入自然懂,可以参考笔者前面推荐的文章
                        root = balanceInsertion(root, x);
                        break;
                    }
                }
            }
        }
        //找到红黑树的根结点并指向tab[i]的位置上,代码很简单不详细介绍
        moveRootToFront(tab, root);
    }

2.4.7resize方法,初始化,扩容

final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        //如果老数组容量大于0
        if (oldCap > 0) {
        	//如果老数组容量大于2的30次方
            if (oldCap >= MAXIMUM_CAPACITY) {
            	//阈值等于2的31次方-1
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            //DEFAULT_INITIAL_CAPACITY=16
            //正常情况,新数组容量等老数组容量2倍
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        //如果没有初始化数组而初始化了阈值,新数组容量等于老阈值
        else if (oldThr > 0) // initial capacity was placed in threshold
            newCap = oldThr;
        //啥都没初始,容量=16,阈值等12
        else {               // zero initial threshold signifies using defaults
            newCap = DEFAULT_INITIAL_CAPACITY;
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        //防止意外,一般不会进这个if
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        //阈值赋值
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {
        	//遍历老数组
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                //如果oldTab[j]不为空,开始操作
                if ((e = oldTab[j]) != null) {
                	//把oldTab[j]置空,回收内存
                    oldTab[j] = null;
                    //如果oldTab[j]只有一个元素,直接放到新数组
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    //如果oldTab[j]是一颗红黑树
                    else if (e instanceof TreeNode)
                    	//详见2.4.8
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    //如果oldTab[j]是大于一个元素的链表
                    else { // preserve order
                    	//尝试将原链表拆成2个链表,一个放在tab[j]另一个放在tab[j + oldCap]
                    	//下面的代码在split方法中有类似操作,详见2.4.8
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }

2.4.8split方法

    final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
        TreeNode<K,V> b = this;
        // Relink into lo and hi lists, preserving order
        //初始化4个参数,目的在于尝试将红黑树拆成2个链表,一个放在tab[index]另一个放在tab[2*index]
        //因为e.hash&bit要么等于0,要么等于1,等于0放tab[index],等于1放tab[2*index]
        TreeNode<K,V> loHead = null, loTail = null;
        TreeNode<K,V> hiHead = null, hiTail = null;
        int lc = 0, hc = 0;
        //把TreeNode当成双向链表进行遍历,尝试拆分
        for (TreeNode<K,V> e = b, next; e != null; e = next) {
            next = (TreeNode<K,V>)e.next;
            e.next = null;
            if ((e.hash & bit) == 0) {
                if ((e.prev = loTail) == null)
                    loHead = e;
                else
                    loTail.next = e;
                loTail = e;
                ++lc;
            }
            else {
                if ((e.prev = hiTail) == null)
                    hiHead = e;
                else
                    hiTail.next = e;
                hiTail = e;
                ++hc;
            }
        }
		//拆成2个链表后,2个链表长度分别为lc和hc
		//判断lc长度是否大于6,大于则树化,否则存链表
        if (loHead != null) {
            if (lc <= UNTREEIFY_THRESHOLD)
                tab[index] = loHead.untreeify(map);
            else {
                tab[index] = loHead;
                //如果hi为0,相当于没有拆,无需树化,直接移动原来整颗红黑树的指针
                if (hiHead != null) // (else is already treeified)
                    loHead.treeify(tab);
            }
        }
        //判断hc长度是否大于6,大于则树化,否则存链表
        if (hiHead != null) {
            if (hc <= UNTREEIFY_THRESHOLD)
                tab[index + bit] = hiHead.untreeify(map);
            else {
                tab[index + bit] = hiHead;
                 //如果lo为0,相当于没有拆,无需树化,直接移动原来整颗红黑树的指针
                if (loHead != null)
                    hiHead.treeify(tab);
            }
        }
    }

2.5get方法

其实看懂了put方法之后,get方法就是小学课本了,下面简单讲一下

2.5.1get方法

	public V get(Object key) {
        Node<K,V> e;
        //调用getNode,没啥好说的,见2.5.2
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

2.5.2getNode方法

	final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        //如果table不为空或者长度大于0
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            //运气好,fist的结点就是要找的,直接返回
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            //运气差,要遍历链表了
            if ((e = first.next) != null) {
            	//如果是红黑树,遍历红黑树
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                //不是红黑树,遍历单链表
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }

2.5.3getTreeNode和find方法

因为getTreeNode实际就是调用了find方法,遂放在一起讲

	final TreeNode<K,V> getTreeNode(int h, Object k) {
		//判断红黑树是否还在,因为可能别的线程删除了
        return ((parent != null) ? root() : this).find(h, k, null);
    }
    final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
        TreeNode<K,V> p = this;
        do {
        	//比大小,看走左边还是走右边,最终找到hash值相等的TreeNode
        	//如果比较不出来,则看TreeNode的left或right是否为空
        	//否则和插入红黑树一样,比较类名,hashCode,identityHashCode等
            int ph, dir; K pk;
            TreeNode<K,V> pl = p.left, pr = p.right, q;
            if ((ph = p.hash) > h)
                p = pl;
            else if (ph < h)
                p = pr;
            else if ((pk = p.key) == k || (k != null && k.equals(pk)))
                return p;
            else if (pl == null)
                p = pr;
            else if (pr == null)
                p = pl;
            else if ((kc != null ||
                      (kc = comparableClassFor(k)) != null) &&
                     (dir = compareComparables(kc, k, pk)) != 0)
                p = (dir < 0) ? pl : pr;
            else if ((q = pr.find(h, k, kc)) != null)
                return q;
            else
                p = pl;
        } while (p != null);
        return null;
    }

转载:https://blog.csdn.net/baidu_41650495/article/details/105239314
查看评论
* 以上用户言论只代表其个人观点,不代表本网站的观点或立场