TResNet: High Performance GPU-Dedicated Architecture
PDF:https://arxiv.org/abs/2003.13630.pdf
PyTorch: https://github.com/shanglianlm0525/PyTorch-Networks
1 概述
TResNet 模型具有表现出更高的准确度和效率。使用 TResNet 模型以及与 ResNet50 相似的 GPU 吞吐量,研究者在 ImageNet 上实现了 80.7% 的 top-1 准确度。
2 TResNet Design
2-1 Stem Design
class SpaceToDepth(nn.Module):
def __init__(self, block_size=4):
super().__init__()
assert block_size == 4
self.bs = block_size
def forward(self, x):
N, C, H, W = x.size()
x = x.view(N, C, H // self.bs, self.bs, W // self.bs, self.bs) # (N, C, H//bs, bs, W//bs, bs)
x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # (N, bs, bs, C, H//bs, W//bs)
x = x.view(N, C * (self.bs ** 2), H // self.bs, W // self.bs) # (N, C*bs^2, H//bs, W//bs)
return x
Mark Sandler, Jonathan Baccash, Andrey Zhmoginov, and Andrew Howard. Non-discriminative data or weak model? on the relative importance of data and model resolution. arXiv preprint arXiv:1909.03205, 2019.
2-2 Anti-Alias Downsampling (AA)
class AADownsample(nn.Module):
def __init__(self, filt_size=3, stride=2, channels=None):
super(AADownsample, self).__init__()
self.filt_size = filt_size
self.stride = stride
self.channels = channels
assert self.filt_size == 3
a = torch.tensor([1., 2., 1.])
filt = (a[:, None] * a[None, :])
filt = filt / torch.sum(filt)
# self.filt = filt[None, None, :, :].repeat((self.channels, 1, 1, 1))
self.register_buffer('filt', filt[None, None, :, :].repeat((self.channels, 1, 1, 1)))
def forward(self, input):
input_pad = F.pad(input, (1, 1, 1, 1), 'reflect')
return F.conv2d(input_pad, self.filt, stride=self.stride, padding=0, groups=input.shape[1])
Richard Zhang. Making convolutional networks shiftinvariant again. In ICML, 2019.
2-3 In-Place Activated BatchNorm (Inplace-ABN)
使用Inplace-ABN 代替所有的BatchNorm+ReLU , 可以大幅减少GPU内存消耗
同时使用Leaky-ReLU代替ReLU,提升性能的同时,带来很少代价
https://github.com/mapillary/inplace_abn
Samuel Rota Bulo, Lorenzo Porzi, and Peter Kontschieder. `In-place activated batchnorm for memory-optimized training of dnns. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018
2-4 Blocks Selection
下图左边为ResNet34 使用的BasicBlock,右边为ResNet50使用的Bottleneck, Bottleneck使用GPU更高,但是可以得到更高精度, BasicBlock有更大的感受野.
因此, TResNet在前两阶段使用BasicBlock,后两阶段使用Bottleneck
2-5 SE Layers
在前三阶段增加SE layers, 同时SE layers位置如下
提出的结构如下
3 Code Optimizations
3-1 JIT Compilation
JIT accelerated SpaceToDepth module
@torch.jit.script
class SpaceToDepthJit(object):
def __call__(self, x: torch.Tensor):
# assuming hard-coded that block_size==4 for acceleration
N, C, H, W = x.size()
x = x.view(N, C, H // 4, 4, W // 4, 4) # (N, C, H//bs, bs, W//bs, bs)
x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # (N, bs, bs, C, H//bs, W//bs)
x = x.view(N, C * 16, H // 4, W // 4) # (N, C*bs^2, H//bs, W//bs)
return x
JIT accelerated AA downsampling module
@torch.jit.script
class AADownsampleJIT(object):
def __init__(self, filt_size: int = 3, stride: int = 2, channels: int = 0):
self.stride = stride
self.filt_size = filt_size
self.channels = channels
assert self.filt_size == 3
assert stride == 2
a = torch.tensor([1., 2., 1.])
filt = (a[:, None] * a[None, :]).clone().detach()
filt = filt / torch.sum(filt)
self.filt = filt[None, None, :, :].repeat((self.channels, 1, 1, 1)).cuda().half()
def __call__(self, input: torch.Tensor):
if input.dtype != self.filt.dtype:
self.filt = self.filt.float()
input_pad = F.pad(input, (1, 1, 1, 1), 'reflect')
return F.conv2d(input_pad, self.filt, stride=2, padding=0, groups=input.shape[1])
3-2 Fixed Global Average Pooling
AvgPool2d比AdaptiveAvgPool2d更快,但是使用View 和 Mean会比AvgPool2d快5倍.
class FastGlobalAvgPool2d(nn.Module):
def __init__(self, flatten=False):
super(FastGlobalAvgPool2d, self).__init__()
self.flatten = flatten
def forward(self, x):
if self.flatten:
in_size = x.size()
return x.view((in_size[0], in_size[1], -1)).mean(dim=2)
else:
return x.view(x.size(0), x.size(1), -1).mean(-1).view(x.size(0), x.size(1), 1, 1)
3-3 Inplace Operations
在所有可能的地方,尽可能的使用 Inplace操作 如 residual connection, SE layers, blocks’ final activation等
4 实验结果
4-1 Basic
4-2 Ablation
转载:https://blog.csdn.net/shanglianlm/article/details/105938699