前言
今天搞了搞手势识别,利用了深度学习网络。
这是手势数据集:Dataset.zip
一、数据准备
1. 解压数据
首先我们需要先解压上述数据集的压缩包,并将其中无关文件删除(将目录换成你的即可):
cd /home/aistudio/data/data23668 && unzip -qo Dataset.zip
cd /home/aistudio/data/data23668/Dataset && rm -f */.DS_Store # 删除无关文件
然后按照数据集中图片生成图像列表:
2. 生成图像列表
# 生成图像列表
data_path = '/home/aistudio/data/data23668/Dataset'
character_folders = os.listdir(data_path)
# print(character_folders)
if(os.path.exists('./train_data.list')):
os.remove('./train_data.list')
if(os.path.exists('./test_data.list')):
os.remove('./test_data.list')
for character_folder in character_folders:
with open('./train_data.list', 'a') as f_train:
with open('./test_data.list', 'a') as f_test:
if character_folder == '.DS_Store':
continue
character_imgs = os.listdir(os.path.join(data_path,character_folder))
count = 0
for img in character_imgs:
if img =='.DS_Store':
continue
if count%10 == 0:
f_test.write(os.path.join(data_path,character_folder,img) + '\t' + character_folder + '\n')
else:
f_train.write(os.path.join(data_path,character_folder,img) + '\t' + character_folder + '\n')
count +=1
print('列表已生成')
3. 定义数据reader
# 定义训练集和测试集的reader
def data_mapper(sample):
img, label = sample
img = Image.open(img)
img = img.resize((100, 100), Image.ANTIALIAS)
img = np.array(img).astype('float32')
img = img.transpose((2, 0, 1))
img = img/255.0
return img, label
def data_reader(data_list_path):
def reader():
with open(data_list_path, 'r') as f:
lines = f.readlines()
for line in lines:
img, label = line.split('\t')
yield img, int(label)
return paddle.reader.xmap_readers(data_mapper, reader, cpu_count(), 512)
# 用于训练的数据提供器
train_reader = paddle.batch(reader=paddle.reader.shuffle(reader=data_reader('./train_data.list'), buf_size=256), batch_size=32)
# 用于测试的数据提供器
test_reader = paddle.batch(reader=data_reader('./test_data.list'), batch_size=32)
二、定义网络
在这里我抛砖引玉,给出两种网络定义,分别是较为简单的全连接神经网络,与较复杂的卷积神经网络:
1. 全连接神经网络
#定义DNN网络
class MyDNN(fluid.dygraph.Layer):
def __init__(self):
super(MyDNN, self).__init__()
self.hidden1 = Linear(100, 300, act="relu")
self.hidden2 = Linear(300, 300, act="relu")
self.hidden3 = Linear(300, 100, act="relu")
self.hidden4 = Linear(3*100*100, 10, act="softmax")
def forward(self, input):
x = self.hidden1(input)
x = self.hidden2(x)
x = self.hidden3(x)
x = fluid.layers.reshape(x, shape=[-1, 3*100*100])
y = self.hidden4(x)
return y
这个网络一共有4层网络(除输入层),其中3层隐藏层,1层输出层;
但这个网络实际应用效果不佳,经过大量测试,最多只能达到**50%-60%**的识别正确率。
2. 卷积神经网络
class MyDNN(fluid.dygraph.Layer):
def __init__(self,training=True):
super(MyDNN,self).__init__()
self.conv1 = Conv2D(num_channels=3,num_filters=32,filter_size=3,act='relu')
self.pool1 = Pool2D(pool_size=2,pool_stride=2,pool_type='max')
self.conv2 = Conv2D(num_channels=32, num_filters=32, filter_size=3, act='relu')
self.pool2 = Pool2D(pool_size=2, pool_stride=2,pool_type='max')
self.conv3 = Conv2D(num_channels=32, num_filters=64, filter_size=3, act='relu')
self.pool3 = Pool2D(pool_size=2, pool_stride=2,pool_type='max')
self.conv4 = Conv2D(num_channels=64, num_filters=128, filter_size=3, act='relu')
self.pool4 = Pool2D(pool_size=2, pool_stride=2,pool_type='max')
self.conv5 = Conv2D(num_channels=128, num_filters=256, filter_size=3, act='relu')
self.fc1 = Linear(input_dim=1024,output_dim=5000,act='relu')
self.drop_ratiol = 0.5 if training else 0.0
self.fc2 = Linear(input_dim=5000, output_dim=10)
def forward(self,input1):
# 卷积层1 --> 池化层1 --> 卷积层2 --> 池化层2 --> 卷积层3 --> 池化层3 --> 卷积层4 --> 池化层4 --> 卷积层5 --> 全连接网络1 --> 丢弃 --> 全连接网络2
conv1 = self.conv1(input1)
pool1 = self.pool1(conv1)
conv2 = self.conv2(pool1)
pool2 = self.pool2(conv2)
conv3 = self.conv3(pool2)
pool3 = self.pool3(conv3)
conv4 = self.conv4(pool3)
pool4 = self.pool4(conv4)
conv5 = self.conv5(pool4)
rs_1 = fluid.layers.reshape(conv5,[conv5.shape[0],-1])
fc1 = self.fc1(rs_1)
drop1 = fluid.layers.dropout(fc1,self.drop_ratiol)
y = self.fc2(drop1)
return y
可以看到,这个卷积神经网络比刚刚的全连接神经网络要复杂很多;
其中包括5层卷积层、4层池化层和2层全连接网络。
三、模型训练
采用动态图方式进行训练:
#用动态图进行训练
with fluid.dygraph.guard():
model=MyDNN(True) #模型实例化
model.train() #训练模式
# opt=fluid.optimizer.SGDOptimizer(learning_rate=0.01, parameter_list=model.parameters())#优化器选用SGD随机梯度下降,学习率为0.001.
opt = fluid.optimizer.Momentum(learning_rate=0.001, momentum=0.9, parameter_list=model.parameters())
epochs_num=160 #迭代次数
for pass_num in range(epochs_num):
for batch_id,data in enumerate(train_reader()):
images=np.array([x[0].reshape(3,100,100) for x in data],np.float32)
labels = np.array([x[1] for x in data]).astype('int64')
labels = labels[:, np.newaxis]
# print(images.shape)
image=fluid.dygraph.to_variable(images)
label=fluid.dygraph.to_variable(labels)
predict=model(image)#预测
# print(predict)
sf_predict = fluid.layers.softmax(predict)
# loss=fluid.layers.cross_entropy(predict,label)
loss = fluid.layers.softmax_with_cross_entropy(predict, label)
avg_loss=fluid.layers.mean(loss)#获取loss值
acc=fluid.layers.accuracy(sf_predict,label)#计算精度
if batch_id!=0 and batch_id%50==0:
print("train_pass:{},batch_id:{},train_loss:{},train_acc:{}".format(pass_num,batch_id,avg_loss.numpy(),acc.numpy()))
avg_loss.backward()
opt.minimize(avg_loss)
model.clear_gradients()
fluid.save_dygraph(model.state_dict(),'MyDNN')#保存模型
经过150次训练:
四、进行测试
对测试集进行测试,以校验模型
#模型校验
with fluid.dygraph.guard():
accs = []
model_dict, _ = fluid.load_dygraph('MyDNN')
model = MyDNN()
model.load_dict(model_dict) #加载模型参数
model.eval() #训练模式
for batch_id,data in enumerate(test_reader()):#测试集
images=np.array([x[0].reshape(3,100,100) for x in data],np.float32)
labels = np.array([x[1] for x in data]).astype('int64')
labels = labels[:, np.newaxis]
image=fluid.dygraph.to_variable(images)
label=fluid.dygraph.to_variable(labels)
predict=model(image)
acc=fluid.layers.accuracy(predict,label)
accs.append(acc.numpy()[0])
avg_acc = np.mean(accs)
print(avg_acc)
经过刚刚的150次训练,此卷积神经网络的准确率可达94%+
再对一张预测图像进行测试:
#读取预测图像,进行预测
def load_image(path):
img = Image.open(path)
img = img.resize((100, 100), Image.ANTIALIAS)
img = np.array(img).astype('float32')
img = img.transpose((2, 0, 1))
img = img/255.0
print(img.shape)
return img
#构建预测动态图过程
with fluid.dygraph.guard():
infer_path = '手势.JPG'
model=MyDNN()#模型实例化
model_dict,_=fluid.load_dygraph('MyDNN')
model.load_dict(model_dict)#加载模型参数
model.eval()#评估模式
infer_img = load_image(infer_path)
infer_img=np.array(infer_img).astype('float32')
infer_img=infer_img[np.newaxis,:, : ,:]
infer_img = fluid.dygraph.to_variable(infer_img)
result=model(infer_img)
display(Image.open('手势.JPG'))
print(np.argmax(result.numpy()))
结果:
转载:https://blog.csdn.net/weixin_40973138/article/details/105267241
查看评论