英文题目:
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
中文题目:
给定一个三角形,找出自顶向下的最小路径和。每一步只能移动到下一行中相邻的结点上。
例如,给定三角形:
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。
说明:
如果你可以只使用 O(n) 的额外空间(n 为三角形的总行数)来解决这个问题,那么你的算法会很加分。
解答:
C++
class Solution {
public:
int minimumTotal(vector<vector<int>>& nums) {
int n = nums.size();
vector<vector<long long>> f(n,vector<long long>(n));
f[0][0] = nums[0][0];
for (int i=1;i<n;i ++)
for (int j=0;j<=i;j ++)
{
f[i][j]=INT_MAX;
if (j>0) f[i][j]=min(f[i][j],f[i-1][j-1]+nums[i][j]);
if (j<i) f[i][j]=min(f[i][j],f[i-1][j]+nums[i][j]);
}
long long res = INT_MAX;
for (int i=0;i<n;i ++) res = min(res,f[n-1][i]);
return res;
}
};
转载:https://blog.csdn.net/XB_please/article/details/100853722
查看评论