题面
额,一个半平面交的板子题
测下板子,里面掺杂大量无用代码,懒得删除了
#include <bits/stdc++.h>
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <queue>
#include <cmath>
#include <string>
#include <cstring>
#include <map>
#include <unordered_map>
#include <set>
#include <vector>
#include <assert.h>
#include <cmath>
#include <ctime>
using namespace std;
#define me(x,y) memset((x),(y),sizeof (x))
#define MIN(x,y) ((x) < (y) ? (x) : (y))
#define MAX(x,y) ((x) > (y) ? (x) : (y))
#define SGN(x) ((x)>0?1:((x)<0?-1:0))
#define ABS(x) ((x)>0?(x):-(x))
// #define int __int128_t
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
const int maxn = 1e6+10;
// const int inf = __INT32_MAX__;
const ll INF = __LONG_LONG_MAX__;
const int mod = 1e9+7;
const double eps = 1e-8;
const double pi = std::acos(-1);
// const string cars[] = {"🚗","🚕","🚙"};
const double inf=1e20;
const int maxp = 1010;
/**
* Compares a double to zero
*/
int sgn(double x){
if(fabs(x) < eps) return 0;
if(x < 0)return -1;
else return 1;
}
inline double sqr(double x){return x*x;}
struct Point{
double x,y;
Point(){}
Point(double _x,double _y){x = _x,y = _y;}
void input(){scanf("%lf%lf",&x,&y);}
void output(){printf("%.2f %.2f\n",x,y);}
bool operator == (Point b)const{return sgn(x-b.x) == 0 && sgn(y-b.y) == 0;}
bool operator < (Point b)const{return sgn(x-b.x) == 0 ? sgn(y-b.y)<0 : x<b.x;}
Point operator -(const Point &b)const{return Point(x-b.x,y-b.y);}
/**
* 叉积
*/
double operator ^ (const Point &b)const{return x*b.y-y*b.x;}
/**
* 点积
*/
double operator * (const Point &b)const{return x*b.x+y*b.y;}
/**
* 返回长度
*/
double len(){return hypot(x,y);}
/**
* 返回长度平方
*/
double len2(){return x*x+y*y;}
/**
* 返回两点间距离
*/
double distance(Point p){return hypot(x-p.x,y-p.y);}
Point operator + (const Point &b)const{return Point(x+b.x,y+b.y);}
Point operator * (const double &k)const{return Point(x*k,y*k);}
Point operator / (const double &k)const{return Point(x/k,y/k);}
/**
* 计算该点看a,b点的角度
*/
double rad(Point a,Point b){Point p = *this;return fabs(atan2(fabs((a-p)^(b-p)),(a-p)*(b-p)));}
/**
* 化为长度为r的向量
*/
Point trunc(double r){
double l = len();
if(!sgn(l)) return *this;
r /= l;
return Point(x*r,y*r);
}
/**
* 逆时针转90度
*/
Point rotleft(){return Point(-y,x);}
/**
* 顺时针转90度
*/
Point rotright(){return Point(y,-x);}
/**
* 绕p点逆时针转angle
*/
Point rotate(Point p,double angle){
Point v = (*this)-p;
double c = cos(angle),s = sin(angle);
return Point(p.x+v.x*c-v.y*s,p.y+v.x*s+v.y*c);
}
};
struct Line{
Point s,e;
Line(){}
Line(Point _s,Point _e){s = _s;e = _e;}
bool operator == (Line v){return (s == v.s) && (e == v.e);}
/**
* 根据一个点和倾斜角angle确定直线,0<=angle<=pi
*/
Line(Point p,double angle){
s = p;
if(sgn(angle-pi/2) == 0){e = (s+Point(0,1));}
else{e = (s+Point(1,tan(angle)));}
}
/**
* ax+by+c=0
*/
Line(double a,double b,double c){
if(sgn(a) == 0){s = Point(0,-c/b);e=Point(1,-c/b);}
else if(sgn(b) == 0){s = Point(-c/a,0);e = Point(-c/a,1);}
else{s = Point(0,-c/b);e = Point(1,(-c-a)/b);}
}
void input(){s.input();e.input();}
void adjust(){if(e < s) swap(s,e);}
/**
* 求线段长度
*/
double length(){return s.distance(e);}
/**
* 返回直线倾斜角0<=angle<=pi
*/
double angle(){
double k = atan2(e.y-s.y,e.x-s.x);
if(sgn(k)<0) k+=pi;
if(sgn(k-pi)==0) k-= pi;
return k;
}
/**
* 点和直线的关系
* 1在左侧
* 2在右侧
* 3在直线上
*/
int relation(Point p){
int c = sgn((p-s)^(e-s));
if(c < 0)return 1;
else if(c > 0) return 2;
else return 3;
}
/**
* 点在线段上的判断
*/
bool pointonseg(Point p){return sgn((p-s)^(e-s)) == 0 && sgn((p-s)^(e-s)) <= 0;}
/**
* 两向量平行(对应直线平行或重合)
*/
bool parallel(Line v){return sgn((e-s)^(v.e-v.s)) == 0;}
/**
* 两线段相交判断
* 2规范相交
* 1非规范相交
* 0不相交
*/
int segcrosseg(Line v){
int d1 = sgn((e-s)^(v.s-s));
int d2 = sgn((e-s)^(v.e-s));
int d3 = sgn((v.e-v.s)^(s-v.s));
int d4 = sgn((v.e-v.s)^(e-v.s));
if((d1^d2) == -2 && (d3^d4) == -2)return 2;
return (d1 == 0 && sgn((v.s-s)*(v.s-e)) <= 0) ||
(d2 == 0 && sgn((v.e-s)*(v.e-e)) <= 0) ||
(d3 == 0 && sgn((s-v.s)*(s-v.e)) <= 0) ||
(d4 == 0 && sgn((e-v.s)*(e-v.e)) <= 0);
}
/**
* 直线和线段相交判断
* 2规范相交
* 1非规范相交
* 0不相交
*/
int linecrossseg(Line v){
int d1 = sgn((e-s)^(v.s-s));
int d2 = sgn((e-s)^(v.e-s));
if((d1^d2) == -2) return 2;
return (d1 == 0 || d2 == 0);
}
/**
* 两直线关系
* 0平行
* 1重合
* 2相交
*/
int linecrossline(Line v){
if((*this).parallel(v)) return v.relation(s) == 3;
return 2;
}
/**
* 求两直线焦点,要保证两直线不平行或重合
*/
Point crosspoint(Line v){
double a1 = (v.e-v.s)^(s-v.s);
double a2 = (v.e-v.s)^(e-v.s);
return Point((s.x*a2-e.x*a1)/(a2-a1),(s.y*a2-e.y*a1)/(a2-a1));
}
/**
* 点到直线的距离
*/
double dispointtoline(Point p){return fabs((p-s)*(e-s))/length();}
/**
* 点到线段的距离
*/
double dispointtoseg(Point p){
if(sgn((p-s)*(e-s)) < 0 || sgn((p-e)*(s-e)) < 0)
return min(p.distance(s),p.distance(e));
return dispointtoline(p);
}
/**
* 线段到线段的距离,前提是两线段不相交,相交距离为0
*/
double dissegtoseg(Line v){
return min(min(dispointtoseg(v.s),dispointtoseg(v.e)),min(v.dispointtoseg(s),v.dispointtoseg(e)));
}
/**
* 返回点p在直线上的投影
*/
Point lineprog(Point p){return s+(((e-s)*((e-s)*(p-s)))/((e-s).len2()));}
/**
* 返回点p关于直线的对称点
*/
Point symmetypoint(Point p){Point q = lineprog(p);return Point(2*q.x-p.x,2*q.y-p.y);}
};
struct polygon{
int n;
Point p[maxp];
Line l[maxp];
void input(int _n){
n = _n;
for(int i = 0; i < n; ++i) p[i].input();
}
void add(Point q){p[n++] = q;}
void getline(){
for(int i = 0; i < n; ++i){
l[i] = Line(p[i],p[(i+1)%n]);
}
}
struct cmp{
Point p;
cmp(const Point &p0){p = p0;}
bool operator()(const Point &aa,const Point &bb){
Point a = aa,b = bb;
int d = sgn((a-p)^(b-p));
if(d == 0) return sgn(a.distance(p)-b.distance(p))<0;
return d > 0;
}
};
/**
* 进行极角排序,首先找到最左下角的点
*/
void norm(){
Point mi = p[0];
for(int i = 1; i < n; ++i) mi = min(mi,p[i]);
sort(p,p+n,cmp(mi));
}
/**
* 得到面积
*/
double getarea(){
double sum=0;
for(int i = 0; i < n; ++i){
sum += (p[i]^p[(i+1)%n]);
}
return fabs(sum)/2;
}
};
//半平面交
struct halfplane:public Line{
double angle;
halfplane(){}
//表示向量 s->e 逆时针 (左侧) 的半平面
halfplane(Point _s,Point _e){
s = _s;
e = _e;
}
halfplane(Line v){
s = v.s;
e = v.e;
}
void calcangle(){
angle = atan2(e.y-s.y,e.x-s.x);
}
bool operator <(const halfplane &b)const{
return angle < b.angle;
}
};
struct halfplanes{
int n;
halfplane hp[maxp];
Point p[maxp];
int que[maxp];
int st,ed;
void push(halfplane tmp){
hp[n++] = tmp;
}
//去重
void unique(){
int m = 1;
for(int i = 1;i < n;i++){
if(sgn(hp[i].angle-hp[i-1].angle) != 0)
hp[m++] = hp[i];
else if(sgn( (hp[m-1].e-hp[m-1].s)^(hp[i].s-hp[m-1].s)) > 0)
hp[m-1] = hp[i];
}
n = m;
}
bool halfplaneinsert(){
for(int i = 0;i < n;i++)hp[i].calcangle();
sort(hp,hp+n);
unique();
que[st=0] = 0;
que[ed=1] = 1;
p[1] = hp[0].crosspoint(hp[1]);
for(int i = 2;i < n;i++){
while(st<ed && sgn((hp[i].e-hp[i].s)^(p[ed]-hp[i].s))<0)ed--;
while(st<ed && sgn((hp[i].e-hp[i].s)^(p[st+1]-hp[i].s))<0)st++;
que[++ed] = i;
if(hp[i].parallel(hp[que[ed-1]])) return false;
p[ed]=hp[i].crosspoint(hp[que[ed-1]]);
}
while(st<ed && sgn((hp[que[st]].e-hp[que[st]].s)^(p[ed]-hp[que[st]].s))<0)ed--;
while(st<ed && sgn((hp[que[ed]].e-hp[que[ed]].s)^(p[st+1]-hp[que[ed]].s))<0)st++;
if(st+1>=ed)return false;
return true;
}
//得到最后半平面交得到的凸多边形
//需要先调用 halfplaneinsert() 且返回 true
void getconvex(polygon &con){
p[st] = hp[que[st]].crosspoint(hp[que[ed]]);
con.n = ed-st+1;
for(int j = st,i = 0;j <= ed;i++,j++)
con.p[i] = p[j];
}
};
int main(){
// ios::sync_with_stdio(false);
#ifndef ONLINE_JUDGE
freopen("1in.in","r",stdin);
freopen("1out.out","w",stdout);
#endif
double x1,x2,x3,x4,y1,y2,y3,y4;
while(cin>>x1>>y1>>x2>>y2>>x3>>y3>>x4>>y4){
polygon tr;
tr.n = 3;
tr.p[0] = Point(x1,y1),tr.p[1] = Point(x1,y2),tr.p[2] = Point(x2,y1);
tr.norm();
halfplanes re;
re.n=0;
re.push(halfplane(Line(tr.p[0],tr.p[1])));
re.push(halfplane(Line(tr.p[1],tr.p[2])));
re.push(halfplane(Line(tr.p[2],tr.p[0])));
re.push(halfplane(Line(Point(x3,y3),Point(x4,y3))));
re.push(halfplane(Line(Point(x4,y3),Point(x4,y4))));
re.push(halfplane(Line(Point(x4,y4),Point(x3,y4))));
re.push(halfplane(Line(Point(x3,y4),Point(x3,y3))));
polygon ans;
if(re.halfplaneinsert()) re.getconvex(ans),printf("%.8f\n",ans.getarea());
else cout<<"0.00000000"<<endl;
// cout<<ans.getarea()<<endl;
}
return 0;
}
转载:https://blog.csdn.net/qq_41746268/article/details/102466708
查看评论