Zookeeper简介
Zookeeper是一个分布式的,开放源码的分布式应用程序协调服务,它是Google的Chubby一个开源的实现,它们都是分布式锁的实现者。
Zookeeper是Hadoop和Hbase的重要组件。Zookeeper 分布式服务框架是Apache Hadoop 的一个子项目,它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组服务等。
ZooKeeper是一种为分布式应用所设计的高可用、高性能且一致的开源协调服务,它一开始提供了一项基本服务:分布式锁服务,由于ZooKeeper的开源特性,后来的开发者在分布式锁的基础上,摸索了出了其他的使用方法:配置维护、组服务、分布式消息队列、分布式通知/协调等。
Zookeeper中的角色
Zookeeper中角色有一下三类,如下表:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-OurIyN5M-1570626797531)(http://static.open-open.com/lib/uploadImg/20141108/20141108213346_932.png)]
系统模型如图所示:
Zookeeper设计目的
-
最终一致性:client不论连接到哪个Server,展示给它都是同一个视图,这是zookeeper最重要的性能
-
可靠性:具有简单、健壮、良好的性能,如果一条消息被一台服务器接受,那么它将被所有的服务器接受
-
实时性:Zookeeper保证客户端将在一个时间间隔范围内获得服务器的更新信息,或者服务器失效的信息,但由于网络延时等原因,Zookeeper不能保证两个客户端能同时得到刚更新的数据,如果需要最新数据,应该在读数据之前调用sync()接口
-
原子性:更新只能成功或者失败,没有中间状态
-
等待无关(wait-free):慢的或者失效的client不得干预快速的client的请求,使得每个client都能有效的等待
-
顺序性:包括全局有序和偏序两种:
- 全局有序是指如果在一台服务器上消息a在消息b前发布,则在所有Server上消息a都将在消息b前被发布
- 偏序是指如果一个消息b在消息a后被同一个发送者发布,a必将排在b前面
Zookeeper核心
Zookeeper的核心是**原子广播,这个机制保证了各个Server之间的同步。**实现这个机制的协议叫做Zab协议。Zab协议有两种模式,它们分 别是恢复模式(选主)和广播模式(同步)。
当服务启动或者在领导者崩溃后,Zab就进入了恢复模式,当领导者被选举出来,且大多数Server完成了和 leader的状态同步以后,恢复模式就结束了。
状态同步(广播模式)保证了leader和Server具有相同的系统状态。为了保证事务的顺序一致性,zookeeper采用了递增的事务id号(zxid)来标识事务。所有的提议(proposal)都在被提出的时候加上 了zxid实现中zxid是一个64位的数字,它高32位是epoch用来标识leader关系是否改变,每次一个leader被选出来,它都会有一个 新的epoch,标识当前属于那个leader的统治时期。
低32位用于递增计数。
每个Server在工作过程中有三种状态:
- LOOKING:当前Server不知道leader是谁,正在搜寻
- LEADING:当前Server即为选举出来的leader
- FOLLOWING:leader已经选举出来,当前Server与之同步
同步流程
选完Leader后,Zookeeper就进入了同步状态
- Leader等待server连接
- Follower连接leader,将最大的zxid发送给leader
- Leader根据Follower的zxid确定同步点
- 完成完同步后Leader通知Follower已经成为uptodate状态
- Follower收到uptodate消息后,又可以重新接受client的请求进行服务了
Leader工作流程
Leader主要有三个功能,Leader的工作启动了三个线程来实现功能:
-
恢复数据
-
维持与Learner的心跳,接收Learner请求并判断Learner的请求消息类型
-
根据不同的消息类型,进行不同的处理,Learner的消息类型主要有PING消息、REQUEST消息、ACK消息、REVALIDATE消息
PING消息是指Learner的心跳信息
REQUEST消息是Follower发送的提议信息,包括写请求及同步请求
ACK消息是 Follower的对提议的回复,超过半数的Follower通过,则commit该提议
REVALIDATE消息是用来延长SESSION有效时间
Follower工作流程
Follower主要有四个功能,Follower的工作是通过5个线程来实现功能的:
-
向Leader发送请求(PING消息、REQUEST消息、ACK消息、REVALIDATE消息)
-
接收Leader消息并进行处理
-
接收Client的请求,如果为写请求,发送给Leader进行投票
-
返回Client结果
Follower的消息循环处理如下几种来自Leader的消息:
PING消息: 心跳消息
PROPOSAL消息:Leader发起的提案,要求Follower投票
COMMIT消息:服务器端最新一次提案的信息
UPTODATE消息:表明同步完成
REVALIDATE消息:根据Leader的REVALIDATE结果,关闭待revalidate的session还是允许其接受消息
SYNC消息:返回SYNC结果到客户端,这个消息最初由客户端发起,用来强制得到最新的更新
Zookeeper原理
ZooKeeper在实现这些服务时,首先它设计一种新的数据结构——Znode,然后在该数据结构的基础上定义了一些原语,也就是一些关于该数据结构的一些操作。有了这些数据结构和原语还不够,因为我们的ZooKeeper是工作在一个分布式的环境下,我们的服务是通过消息以网络的形式发送给我们的分布式应用程序,所以还需要一个通知机制——Watcher机制。
那么总结一下,ZooKeeper所提供的服务主要是通过:数据结构+原语+watcher机制三个部分来实现的
数据结构——Znode
ZooKeeper拥有一个层次的命名空间,这个和标准的文件系统非常相似,如下图所示。
从图中我们可以看出ZooKeeper的数据模型,在结构上和标准文件系统的非常相似,都是采用这种树形层次结构,
ZooKeeper树中的每个节点被称为—Znode。和文件系统的目录树一样,ZooKeeper树中的每个节点可以拥有子节点。但也有不同之处:
-
引用方式
Zonde通过路径引用,如同Unix中的文件路径。路径必须是绝对的,必须是唯一的,
路径由Unicode字符串组成,并且有一些限制。路径"/zookeeper"用以保存管理信息,比如关键配额信息。 -
Znode结构
Zookeeper命名空间中的Znode,兼具文件和目录两种特点。既像文件一样维护着数据、元信息、ACL、时间戳等数据结构,又像目录一样可以作为路径标识的一部分。
图中的每个节点称为一个Znode。 每个Znode由3部分组成:- stat:此为状态信息, 描述该Znode的版本, 权限等信息
- data:与该Znode关联的数据
- children:该Znode下的子节点
注意:ZooKeeper虽然可以关联一些数据,但并没有被设计为常规的数据库或者大数据存储,相反的是,它用来管理调度数据,比如分布式应用中的配置文件信息、状态信息、汇集位置等等
这些数据的共同特性就是它们都是很小的数据,通常以KB为大小单位。ZooKeeper的服务器和客户端都被设计为严格检查并限制每个Znode的数据大小至多1M,但常规使用中应该远小于此值
-
数据访问
ZooKeeper中的每个节点存储的数据要被原子性的操作。也就是说读操作将获取与节点相关的所有数据,写操作也将替换掉节点的所有数据。
另外,每一个节点都拥有自己的ACL(访问控制列表),这个列表规定了用户的权限,即限定了特定用户对目标节点可以执行的操作。 -
节点类型
ZooKeeper中的节点有两种,分别为临时节点和永久节点。
节点的类型在创建时即被确定,并且不能改变。临时结点:该结点的生命周期依赖于创建它们的会话。一旦会话(Session)结束,临时节点将被自动删除,当然可以也可以手动删除。虽然每个临时的Znode都会绑定到一个客户端会话,但他们对所有的客户端还是可见的。另外,ZooKeeper的临时节点不允许拥有子节点
永久结点:该结点的生命周期不依赖于会话,并且只有在客户端显示执行删除操作的时候,他们才能被删除
-
顺序结点
当创建Znode的时候,用户可以请求在ZooKeeper的路径结尾添加一个递增的计数。
这个计数对于此节点的父节点来说是唯一的,它的格式为"%10d"(10位数字,没有数值的数位用0补充,例如"0000000001")。当计数值大于232-1时,计数器将溢出 -
观察
客户端可以在节点上设置watch,我们称之为监视器。
当节点状态发生改变时(Znode的增、删、改)将会触发watch所对应的操作。当watch被触发时,ZooKeeper将会向客户端发送且仅发送一条通知,因为watch只能被触发一次,这样可以减少网络流量
Zookeeper中的时间
ZooKeeper有多种记录时间的形式,其中包含以下几个主要属性:
-
Zxid
致使ZooKeeper节点状态改变的每一个操作都将使节点接收到一个Zxid格式的时间戳,并且这个时间戳全局有序。也就是说,每个对 节点的改变都将产生一个唯一的Zxid。
如果Zxid1的值小于Zxid2的值,那么Zxid1所对应的事件发生在Zxid2所对应的事件之前。实际 上,ZooKeeper的每个节点维护者三个Zxid值,为别为:cZxid、mZxid、pZxid
① cZxid: 是节点的创建时间所对应的Zxid格式时间戳
②mZxid:是节点的修改时间所对应的Zxid格式时间戳
③pZxid:这个节点就和子节点有关,是与该节点的子节点(或该节点)的最近一次 创建 / 删除的时间戳对应,注:只与 本节点 / 该节点的子节点,有关;与孙子节点无关。
-
版本号
对节点的每一个操作都将致使这个节点的版本号增加。每个节点维护着三个版本号,他们分别为:
① version:节点数据版本号
② cversion:子节点版本号
③ aversion:节点所拥有的ACL版本号
Zookeeper节点属性
通过前面的介绍,我们可以了解到,一个节点自身拥有表示其状态的许多重要属性,如下图所示
Zookeeper服务中的操作
更新ZooKeeper操作是有限制的
delete或setData必须明确要更新的Znode的版本号,我们可以调用exists找到。如果版本号不匹配,更新将会失败。
更新ZooKeeper操作是非阻塞式的
因此客户端如果失去了一个更新(由于另一个进程在同时更新这个Znode),他可以在不阻塞其他进程执行的情况下,选择重新尝试或进行其他操作。
尽管ZooKeeper可以被看做是一个文件系统,但是处于便利,摒弃了一些文件系统地操作原语。因为文件非常的小并且使整体读写的,所以不需要打开、关闭或是寻地的操作。
Watch触发器
Watch简介
ZooKeeper可以为所有的读操作设置watch,这些读操作包括:exists()、getChildren()及getData()。
watch事件是一次性的触发器,当watch的对象状态发生改变时,将会触发此对象上watch所对应的事件。
watch事件将被异步地发送给客户端,并且ZooKeeper为watch机制提供了有序的一致性保证。
理论上,客户端接收watch事件的时间要快于其看到watch对象状态变化的时间。
Watch类型
ZooKeeper所管理的watch可以分为两类:
① 数据watch(data watches):getData和exists负责设置数据watch
② 孩子watch(child watches):getChildren负责设置孩子watch
我们可以通过操作返回的数据来设置不同的watch:
① getData和exists:返回关于节点的数据信息
② getChildren:返回孩子列表
因此
① 一个成功的setData操作将触发Znode的数据watch
② 一个成功的create操作将触发Znode的数据watch以及孩子watch
③ 一个成功的delete操作将触发Znode的数据watch以及孩子watch
Watch注册与触发
① exists操作上的watch,在被监视的Znode创建、删除或数据更新时被触发。
② getData操作上的watch,在被监视的Znode删除或数据更新时被触发。在被创建时不能被触发,因为只有Znode一定存在,getData操作才会成功。
③ getChildren操作上的watch,在被监视的Znode的子节点创建或删除,或是这个Znode自身被删除时被触发。可以通过查看watch事件类型来区分是Znode,还是他的子节点被删除:NodeDelete表示Znode被删除,NodeDeletedChanged表示子节点被删除。
Watch由客户端所连接的ZooKeeper服务器在本地维护,因此watch可以非常容易地设置、管理和分派。当客户端连接到一个新的服务器 时,任何的会话事件都将可能触发watch。另外,当从服务器断开连接的时候,watch将不会被接收。但是,当一个客户端重新建立连接的时候,任何先前 注册过的watch都会被重新注册。
注意:
Zookeeper的Watch实际要处理两类事件:
-
连接状态事件
这类事件不需要注册,也不需要我们连续触发,我们只要处理就行了。
-
节点事件
节点的建立,删除,数据的修改。它是one time trigger,我们需要不停的注册触发,还可能发生事件丢失的情况。
上面2类事件都在Watch中处理,也就是重载的process(Event event)
节点事件的触发,通过函数exists,getData或getChildren来处理这类函数,有双重作用:
① 注册触发事件
② 函数本身的功能
这类事件不需要注册,也不需要我们连续触发,我们只要处理就行了。
-
节点事件
节点的建立,删除,数据的修改。它是one time trigger,我们需要不停的注册触发,还可能发生事件丢失的情况。
上面2类事件都在Watch中处理,也就是重载的process(Event event)
节点事件的触发,通过函数exists,getData或getChildren来处理这类函数,有双重作用:
① 注册触发事件
② 函数本身的功能
函数的本身的功能又可以用异步的回调函数来实现,重载processResult()过程中处理函数本身的的功能。
转载:https://blog.csdn.net/baolingye/article/details/102470109