位于torchvision.ops下(pytorch>=1.2.0, torchvision >= 0.3)
NMS:
torchvision.ops.nms(boxes, scores, iou_threshold)
参数:
- boxes (Tensor[N, 4])) – bounding boxes坐标. 格式:(x1, y1, x2, y2)
- scores (Tensor[N]) – bounding boxes得分
- iou_threshold (float) – IoU过滤阈值
返回值:
- keep :NMS过滤后的bouding boxes索引(降序排列)
RoIAlign: 用于Mask R-CNN
torchvision.ops.roi_align(input, boxes, output_size, spatial_scale=1.0, sampling_ratio=-1)
参数:
- input (Tensor[N, C, H, W]) – 输入张量
- boxes (Tensor[K, 5] or List[Tensor[L, 4]]) – 输入的box 坐标,格式:list(x1, y1, x2, y2) 或者(batch_index, x1, y1, x2, y2)
- output_size (int or Tuple[int, int]) – 输出尺寸, 格式: (height, width)
- spatial_scale (float) – 将输入坐标映射到box坐标的尺度因子. 默认: 1.0
- sampling_ratio (int) – 插值网格上用来计算池化后输出的采样点数量;如果sampling_ratio>0, sampling_ratio个采样点将会被使用,如果sampling_ratio<= 0,自适应采样点数量,即ceil(roi_width / pooled_w)和ceil(roi_height / pooled_h),默认: sampling_ratio =-1
RoIPool:用于Fast R-CNN
torchvision.ops.roi_pool(input, boxes, output_size, spatial_scale=1.0)
参数:
- input (Tensor[N, C, H, W]) – 输入张量
- boxes (Tensor[K, 5] or List[Tensor[L, 4]]) – 输入的box 坐标,格式:list(x1, y1, x2, y2) 或者(batch_index, x1, y1, x2, y2)
- output_size (int or Tuple[int, int]) – 输出尺寸, 格式: (height, width)
- spatial_scale (float) – 将输入坐标映射到box坐标的尺度因子. 默认: 1.0
转载:https://blog.csdn.net/shanglianlm/article/details/102002844
查看评论