小言_互联网的博客

一个更深的卷积神经网络

362人阅读  评论(0)

加深网络

深度学习是加深了层的深度神经网络

向更深的神经网络出发

  • **卷积层:**都为3*3的小型滤波器,随着层的增加,通道数变大==(16,16,32,32,64,64)==
  • **池化层:**逐渐减小中间数据的空间大小
  • **全连接层后面使用Dropout层:**随机删除神经元,抑制过拟合
  • 权重初始值采用He正向传播时,状态值的方差不变;反向传播时,激活值梯度方差不变
  • 参数更新采用Adam
  • 激活函数: Relu

Deep_convolution_net.py

# coding: utf-8
import sys, os
sys.path.append(os.pardir)  # 为了导入父目录的文件而进行的设定
import pickle
import numpy as np
from collections import OrderedDict
from layers import *


class DeepConvNet:
    """识别率为99%以上的高精度的ConvNet

    网络结构如下所示
        conv - relu - conv- relu - pool -
        conv - relu - conv- relu - pool -
        conv - relu - conv- relu - pool -
        affine - relu - dropout - affine - dropout - softmax
    """

    def __init__(self, input_dim=(1, 28, 28),
                 conv_param_1={'filter_num': 16, 'filter_size': 3, 'pad': 1, 'stride': 1},
                 conv_param_2={'filter_num': 16, 'filter_size': 3, 'pad': 1, 'stride': 1},
                 conv_param_3={'filter_num': 32, 'filter_size': 3, 'pad': 1, 'stride': 1},
                 conv_param_4={'filter_num': 32, 'filter_size': 3, 'pad': 2, 'stride': 1},
                 conv_param_5={'filter_num': 64, 'filter_size': 3, 'pad': 1, 'stride': 1},
                 conv_param_6={'filter_num': 64, 'filter_size': 3, 'pad': 1, 'stride': 1},
                 hidden_size=50, output_size=10):
        # 初始化权重===========
        # 各层的神经元平均与前一层的几个神经元有连接(TODO:自动计算)
        pre_node_nums = np.array(
            [1 * 3 * 3, 16 * 3 * 3, 16 * 3 * 3, 32 * 3 * 3, 32 * 3 * 3, 64 * 3 * 3, 64 * 4 * 4, hidden_size])
        wight_init_scales = np.sqrt(2.0 / pre_node_nums)  # 使用ReLU的情况下推荐的初始值

        self.params = {}
        pre_channel_num = input_dim[0]
        for idx, conv_param in enumerate(
                [conv_param_1, conv_param_2, conv_param_3, conv_param_4, conv_param_5, conv_param_6]):
            self.params['W' + str(idx + 1)] = wight_init_scales[idx] * np.random.randn(conv_param['filter_num'],
                                                                                       pre_channel_num,
                                                                                       conv_param['filter_size'],
                                                                                       conv_param['filter_size'])
            self.params['b' + str(idx + 1)] = np.zeros(conv_param['filter_num'])
            pre_channel_num = conv_param['filter_num']
        self.params['W7'] = wight_init_scales[6] * np.random.randn(64 * 4 * 4, hidden_size)
        self.params['b7'] = np.zeros(hidden_size)
        self.params['W8'] = wight_init_scales[7] * np.random.randn(hidden_size, output_size)
        self.params['b8'] = np.zeros(output_size)

        # 生成层===========
        self.layers = []
        self.layers.append(Convolution(self.params['W1'], self.params['b1'],
                                       conv_param_1['stride'], conv_param_1['pad']))
        self.layers.append(Relu())
        self.layers.append(Convolution(self.params['W2'], self.params['b2'],
                                       conv_param_2['stride'], conv_param_2['pad']))
        self.layers.append(Relu())
        self.layers.append(Pooling(pool_h=2, pool_w=2, stride=2))
        self.layers.append(Convolution(self.params['W3'], self.params['b3'],
                                       conv_param_3['stride'], conv_param_3['pad']))
        self.layers.append(Relu())
        self.layers.append(Convolution(self.params['W4'], self.params['b4'],
                                       conv_param_4['stride'], conv_param_4['pad']))
        self.layers.append(Relu())
        self.layers.append(Pooling(pool_h=2, pool_w=2, stride=2))
        self.layers.append(Convolution(self.params['W5'], self.params['b5'],
                                       conv_param_5['stride'], conv_param_5['pad']))
        self.layers.append(Relu())
        self.layers.append(Convolution(self.params['W6'], self.params['b6'],
                                       conv_param_6['stride'], conv_param_6['pad']))
        self.layers.append(Relu())
        self.layers.append(Pooling(pool_h=2, pool_w=2, stride=2))
        self.layers.append(Affine(self.params['W7'], self.params['b7']))
        self.layers.append(Relu())
        self.layers.append(Dropout(0.5))
        self.layers.append(Affine(self.params['W8'], self.params['b8']))
        self.layers.append(Dropout(0.5))

        self.last_layer = SoftmaxWithLoss()

    # --------------------------------------------预测----------------------------------------------------
    def predict(self, x, train_flg=False):
        for layer in self.layers:
            if isinstance(layer, Dropout):
                x = layer.forward(x, train_flg)
            else:
                x = layer.forward(x)
        return x

    # ----------------------------------------损失函数------------------------------------------------------
    def loss(self, x, t):
        y = self.predict(x, train_flg=True)
        return self.last_layer.forward(y, t)

    # --------------------------------------精度----------------------------------------------------------
    def accuracy(self, x, t, batch_size=100):
        if t.ndim != 1:
            t = np.argmax(t, axis=1)

        acc = 0.0

        for i in range(int(x.shape[0] / batch_size)):
            tx = x[i * batch_size:(i + 1) * batch_size]
            tt = t[i * batch_size:(i + 1) * batch_size]
            y = self.predict(tx, train_flg=False)
            y = np.argmax(y, axis=1)
            acc += np.sum(y == tt)

        return acc / x.shape[0]

    # --------------------------------------------梯度下降--------------------------------------------
    def gradient(self, x, t):
        # forward
        self.loss(x, t)

        # backward
        dout = 1
        dout = self.last_layer.backward(dout)

        tmp_layers = self.layers.copy()
        tmp_layers.reverse()
        for layer in tmp_layers:
            dout = layer.backward(dout)

        # 设定
        grads = {}
        for i, layer_idx in enumerate((0, 2, 5, 7, 10, 12, 15, 18)):
            grads['W' + str(i + 1)] = self.layers[layer_idx].dW
            grads['b' + str(i + 1)] = self.layers[layer_idx].db

        return grads

    # ---------------------------------------保存参数,利用pickle---------------------------------------------
    def save_params(self, file_name="params.pkl"):
        params = {}
        for key, val in self.params.items():
            params[key] = val
        with open(file_name, 'wb') as f:
            pickle.dump(params, f)

    # ------------------------------------加载参数,利用pickle----------------------------------------------------
    def load_params(self, file_name="params.pkl"):
        with open(file_name, 'rb') as f:
            params = pickle.load(f)
        for key, val in params.items():
            self.params[key] = val

        for i, layer_idx in enumerate((0, 2, 5, 7, 10, 12, 15, 18)):
            self.layers[layer_idx].W = self.params['W' + str(i + 1)]
            self.layers[layer_idx].b = self.params['b' + str(i + 1)]

train_deep_convolution_net.py

# coding: utf-8
import sys, os
sys.path.append(os.pardir)  # 为了导入父目录而进行的设定
import numpy as np
import matplotlib.pyplot as plt
from dataset.mnist import load_mnist
from deep_concolution import DeepConvNet
from trainer import Trainer


(x_train, t_train), (x_test, t_test) = load_mnist(flatten=False)

network = DeepConvNet()
trainer = Trainer(network, x_train, t_train, x_test, t_test,
                  epochs=20, mini_batch_size=100,
                  optimizer='Adam', optimizer_param={'lr': 0.001},
                  evaluate_sample_num_per_epoch=1000)
trainer.train()

# 保存参数
network.save_params("deep_convnet_params.pkl")
print("Saved Network Parameters!")

转载:https://blog.csdn.net/weixin_44478378/article/details/101974752
查看评论
* 以上用户言论只代表其个人观点,不代表本网站的观点或立场