1 线程池的好处
在实际使用中,线程是很占用系统资源的,如果对线程管理不善很容易导致系统问题。因此,在大多数并发框架中都会使用线程池来管理线程,使用线程池管理线程主要有如下好处:
**降低资源消耗。**通过复用已存在的线程和降低线程关闭的次数来尽可能降低系统性能损耗;
**提升系统响应速度。*通过复用线程,省去创建线程的过程,因此整体上提升了系统的响应速度;
提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,因此,需要使用线程池来管理线程。
2 线程池的创建及参数详解
线程池的创建
创建线程池主要是ThreadPoolExecutor类来完成,ThreadPoolExecutor的有许多重载的构造方法,通过参数最多的构造方法来理解创建线程池有哪些需要配置的参数。ThreadPoolExecutor的构造方法为:
ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler)
- 第1个参数: corePoolSize 表示常驻核心线程数
如果等于0,则任务执行完之后,没有任何请求进入时销毁线程池的线程;
如果大于0,即使本地任务执行完毕,核心线程也不会被销毁.
这个值的设置非常关键;
设置过大会浪费资源;
设置过小会导致线程频繁地创建或销毁. - 第2个参数: maximumPoolSize 表示线程池能够容纳同时执行的最大线程数
从第1处来看,必须>=1.
如果待执行的线程数大于此值,需要借助第5个参数的帮助,缓存在队列中.
如果maximumPoolSize = corePoolSize,即是固定大小线程池. - 第3个参数: keepAliveTime 表示线程池中的线程空闲时间
当空闲时间达到keepAliveTime时,线程会被销毁,直到只剩下corePoolSize个线程;
避免浪费内存和句柄资源.
在默认情况下,当线程池的线程数大于corePoolSize时,keepAliveTime才起作用.
但是当ThreadPoolExecutor的allowCoreThreadTimeOut = true时,核心线程超时后也会被回收. - 第4个参数: TimeUnit表示时间单位
keepAliveTime的时间单位通常是TimeUnit.SECONDS. - 第5个参数: workQueue 表示缓存队列
当请求的线程数大于maximumPoolSize时,线程进入BlockingQueue.
后续示例代码中使用的LinkedBlockingQueue是单向链表,使用锁来控制入队和出队的原子性;
两个锁分别控制元素的添加和获取,是一个生产消费模型队列. - 第6个参数: threadFactory 表示线程工厂
它用来生产一组相同任务的线程;
线程池的命名是通过给这个factory增加组名前缀来实现的.
在虚拟机栈分析时,就可以知道线程任务是由哪个线程工厂产生的. - 第7个参数: handler 表示执行拒绝策略的对象
有四种策略模式:
● AbortPolicy - 默认
丢弃任务并抛出RejectedExecutionException
● DiscardPolicy - 不推荐
丢弃任务,但不拋异常.
● DiscardOldestPolicy
抛弃队列中等待最久的任务,然后把当前任务加入队列中.
● CallerRunsPolicy
只用调用者所在的线程来执行任务;
下图为ThreadPoolExecutor的execute方法的执行示意图:
execute方法执行逻辑有这样几种情况:
如果当前运行的线程少于corePoolSize,则会创建新的线程来执行新的任务;
如果运行的线程个数等于或者大于corePoolSize,则会将提交的任务存放到阻塞队列workQueue中;
如果当前workQueue队列已满的话,则会创建新的线程来执行任务;
如果线程个数已经超过了maximumPoolSize,则会使用饱和策略RejectedExecutionHandler来进行处理。
需要注意的是,线程池的设计思想就是使用了核心线程池corePoolSize,阻塞队列workQueue和线程池maximumPoolSize,这样的缓存策略来处理任务,实际上这样的设计思想在需要框架中都会使用。
3. 线程池的工作原理
当一个并发任务提交给线程池,线程池分配线程去执行任务的过程如下图所示:
从图可以看出,线程池执行所提交的任务过程主要有这样几个阶段:
先判断线程池中核心线程池所有的线程是否都在执行任务。如果不是,则新创建一个线程执行刚提交的任务,否则,核心线程池中所有的线程都在执行任务,则进入第2步;
判断当前阻塞队列是否已满,如果未满,则将提交的任务放置在阻塞队列中;否则,则进入第3步;
判断线程池中所有的线程是否都在执行任务,如果没有,则创建一个新的线程来执行任务,否则,则交给饱和策略进行处理
4. 线程池的关闭
关闭线程池,可以通过shutdown和shutdownNow这两个方法。它们的原理都是遍历线程池中所有的线程,然后依次中断线程。shutdown和shutdownNow还是有不一样的地方:
shutdownNow首先将线程池的状态设置为STOP***,然后尝试停止所有的正在执行和未执行任务的线程,并返回等待执行任务的列表;
shutdown只是将线程池的状态设置为SHUTDOWN状态***,然后中断所有没有正在执行任务的线程
可以看出shutdown方法会将正在执行的任务继续执行完,而shutdownNow会直接中断正在执行的任务**。调用了这两个方法的任意一个,isShutdown方法都会返回true,当所有的线程都关闭成功,才表示线程池成功关闭,这时调用isTerminated方法才会返回true。
5. 如何合理配置线程池参数?
要想合理的配置线程池,就必须首先分析任务特性,可以从以下几个角度来进行分析:
- 任务的性质:CPU密集型任务,IO密集型任务和混合型任务
- 任务的优先级:高,中和低。
- 任务的执行时间:长,中和短
- 任务的依赖性:是否依赖其他系统资源,如数据库连接。
任务性质不同的任务可以用不同规模的线程池分开处理。CPU密集型任务配置尽可能少的线程数量,如配置Ncpu+1个线程的线程池。IO密集型任务则由于需要等待IO操作,线程并不是一直在执行任务,则配置尽可能多的线程,如2xNcpu。混合型的任务,如果可以拆分,则将其拆分成一个CPU密集型任务和一个IO密集型任务,只要这两个任务执行的时间相差不是太大,那么分解后执行的吞吐率要高于串行执行的吞吐率,如果这两个任务执行时间相差太大,则没必要进行分解。我们可以通过Runtime.getRuntime().availableProcessors()方法获得当前设备的CPU个数。
优先级不同的任务可以使用优先级队列PriorityBlockingQueue来处理。它可以让优先级高的任务先得到执行,需要注意的是如果一直有优先级高的任务提交到队列里,那么优先级低的任务可能永远不能执行。
执行时间不同的任务可以交给不同规模的线程池来处理,或者也可以使用优先级队列,让执行时间短的任务先执行。
依赖数据库连接池的任务,因为线程提交SQL后需要等待数据库返回结果,如果等待的时间越长CPU空闲时间就越长,那么线程数应该设置越大,这样才能更好的利用CPU。
并且,阻塞队列最好是使用有界队列,如果采用无界队列的话,一旦任务积压在阻塞队列中的话就会占用过多的内存资源,甚至会使得系统崩溃。
转载:https://blog.csdn.net/qq_28178083/article/details/101312414