小言_互联网的博客

Kotlin学习:5.2、异步数据流 Flow

392人阅读  评论(0)

Flow

一、Flow

1、Flow是什么东西?

Flow 是有点类似 RxJava 的 Observable

都有冷流和热流之分;
都有流式构建结构;
都包含 map、filter 等操作符。

区别于Observable,Flow可以配合挂起函数使用

2、实现功能

异步返回多个值

可以实现下载功能等,Observable 下发数组时可以实现什么功能,他就能实现什么功能

当文件下载时,对应的后台下载进度,就可以通过Flow里面的emit发送数据,通过collect接收对应的数据。

转:https://blog.csdn.net/qq_30382601/article/details/121825461

3、特点

  • flow{…}块中的代码可以挂起
  • 使用flow,suspend修饰符可以省略
  • 流使用emit函数发射值
  • 流使用collect的函数收集值
  • flow类似冷流,flow中代码直到流被收集(调用collect)的时候才运行,类似lazy,什么时候用,什么时候执行。
  • 流的连续性:流收集都是按顺序收集的
  • flowOn可更改流发射的上下文,即可以指定在主线程或子线程中执行
  • 与之相对的是热流,我们即将介绍的 StateFlow 和 SharedFlow 是热流,在垃圾回收之前,都是存在内存之中,并且处于活跃状态的。

转:https://blog.csdn.net/zx_android/article/details/122744370

4、冷流和热流

  • 冷流
    冷流类似冷启动,代码在被用到才会执行,如你需要使用的数据在网络,需要先请求网络才能得到数据
    Flow是一种类似于序列的冷流,flow构建器中的代码直到流被收集的时候才运行。

  • 热流
    热流类似热启动,代码在用到之前已经准备好,如你请求过网络,数据已经缓存在本地,你只需直接使用即可

5、流的连续性

流的连续性:流收集都是按顺序收集的

6、流的构建器

如下三种为冷流构建器

  1. flow{emit} .collect{}
  2. flowOf(***).collect{}
  3. (***).asFlow().collect{}
    @Test
    fun `test flow builder`() = runBlocking<Unit> {
   

        flowOf("one", "two", "three")
            .onEach {
    delay(1000) }
            .collect {
    value ->
                println(value)
            }

        (1..3).asFlow().collect {
    value ->
            println(value)
        }

        flow<Int> {
   
            for (i in 11..13) {
   
                delay(1000) //假装在一些重要的事情
                emit(i) //发射,产生一个元素
            }
        }.collect {
    value ->
            println(value)
        }

    }

 

7、流的上下文

flowOn (多用于切线程)

流的收集总是在调用协程的上下文中发生,流的该属性称为上下文保存。

    fun simpleFlow3() = flow<Int> {
   
        println("Flow started ${
     Thread.currentThread().name}")
        for (i in 1..3) {
   
            delay(1000)
            emit(i)
        }
    }

    @Test
    fun `test flow context`() = runBlocking<Unit> {
   
        simpleFlow3()
            .collect {
    value -> println("Collected $value ${
     Thread.currentThread().name}") }
    }

如下:流的发射和接收在一个协程内

Flow started Test worker @coroutine#1
Collected 1 Test worker @coroutine#1
Collected 2 Test worker @coroutine#1
Collected 3 Test worker @coroutine#1

flow{…}构建器中的代码必须遵循上下文保存属性,并且不允许从其他上下文中发生(emit)

如下这种写法不被允许

    fun simpleFlow4() = flow<Int> {
   
        withContext(Dispatchers.Default) {
   
            println("Flow started ${
     Thread.currentThread().name}")
            for (i in 1..3) {
   
                delay(1000)
                emit(i)
            }
        }
    }

那么如何切换协程上下文呢?
flowOn操作符,该函数用于更改流发射的上下文

    fun simpleFlow5() = flow<Int> {
   
        println("Flow started ${
     Thread.currentThread().name}")
        for (i in 1..3) {
   
            delay(1000)
            emit(i)
        }
    }.flowOn(Dispatchers.Default)

    @Test
    fun `test flow context`() = runBlocking<Unit> {
   
        simpleFlow5()
            .collect {
    value -> println("Collected $value ${
     Thread.currentThread().name}") }
    }

如下:切换上下文成功

Flow started DefaultDispatcher-worker-2 @coroutine#2
Collected 1 Test worker @coroutine#1
Collected 2 Test worker @coroutine#1
Collected 3 Test worker @coroutine#1

8、指定流所在协程

launchIn 用于指定协程作用域通知flow执行

使用 launchIn 替换 collect 在单独的协程中启动收集流

  • 指定协程
    //事件源
    private fun events() = (1..3)
        .asFlow()
        .onEach {
    delay(100) }
        .flowOn(Dispatchers.Default)

    @Test
    fun `test flow launch`() = runBlocking<Unit> {
   
        val job = events()
            .onEach {
    event -> println("Event: $event ${
     Thread.currentThread().name}") }
//                .collect {}
            .launchIn(CoroutineScope(Dispatchers.IO)) //这里使用另一个上下文传入Flow
//                .launchIn(this)//这里使用当前上下文传入Flow

        job.join()

    }

 

打印:

Event: 1 DefaultDispatcher-worker-2 @coroutine#2
Event: 2 DefaultDispatcher-worker-1 @coroutine#2
Event: 3 DefaultDispatcher-worker-3 @coroutine#2
  • 也可以指定当前协程中执行
    @Test
    fun `test flow launch`() = runBlocking<Unit> {
   
        val job = events()
            .onEach {
    event -> println("Event: $event ${
     Thread.currentThread().name}") }
//                .collect {}
//            .launchIn(CoroutineScope(Dispatchers.IO)) //这里使用另一个上下文传入Flow
                .launchIn(this)//这里使用当前上下文传入Flow

//        job.join()

    }
Event: 1 Test worker @coroutine#2
Event: 2 Test worker @coroutine#2
Event: 3 Test worker @coroutine#2

9、流的取消

流采用和协程同样的协作取消。流可以在挂起函数的挂起的时候取消。

9.1、超时取消

withTimeoutOrNull 不能取消密集型任务

    fun simpleFlow6() = flow<Int> {
   
        for (i in 1..300) {
   
            delay(1000)
            emit(i)
            println("Emitting $i")
        }
    }


    @Test
    fun `test cancel flow`() = runBlocking<Unit> {
   
        withTimeoutOrNull(2500) {
   
            simpleFlow6().collect {
    value -> println(value) }
        }
        println("Done")
    }

 

9.2、主动取消

cancel

    @Test
    fun `test cancel flow `() = runBlocking<Unit> {
   
        simpleFlow6()
            .collect {
    value ->
                if (value == 3) {
   
                    cancel()
                }
                println(value)
            }
        println("Done")
    }

9.3、密集型任务的取消

密集型任务需要流的取消检测

cancel + cancellable

    @Test
    fun `test cancel flow check`() = runBlocking<Unit> {
   
        (1..5).asFlow().cancellable().collect {
    value ->
            println(value)
            if (value == 3) cancel()
            println("cancel check ${
     coroutineContext[Job]?.isActive}")
        }
    }

10、背压和优化

  • 什么是背压?

生产者生产的效率大于消费者消费的效率,元素积压

例,演示背压

     fun simpleFlow8() = flow<Int> {
   
        for (i in 1..10) {
   
            // emit 上面这段代码在collect之前执行
            delay(100)
            emit(i) // 调用collect
            // emit下面这段代码在 collect 之后执行
            println("Emitting $i ${
     Thread.currentThread().name}")
        }
    }

    @Test
    fun `test flow back pressure`() = runBlocking<Unit> {
   
        val time = measureTimeMillis {
   
            simpleFlow8()
                .collect {
    value ->
                    delay(200)   //处理这个元素消耗 200ms
                    println("Collected $value ${
     Thread.currentThread().name}")
                }
        }
        println("Collected in $time ms")
    }

 
Collected 1 Test worker @coroutine#1
Emitting 1 Test worker @coroutine#1
Collected 2 Test worker @coroutine#1
Emitting 2 Test worker @coroutine#1
Collected 3 Test worker @coroutine#1
Emitting 3 Test worker @coroutine#1
Collected 4 Test worker @coroutine#1
Emitting 4 Test worker @coroutine#1
Collected 5 Test worker @coroutine#1
Emitting 5 Test worker @coroutine#1
Collected 6 Test worker @coroutine#1
Emitting 6 Test worker @coroutine#1
Collected 7 Test worker @coroutine#1
Emitting 7 Test worker @coroutine#1
Collected 8 Test worker @coroutine#1
Emitting 8 Test worker @coroutine#1
Collected 9 Test worker @coroutine#1
Emitting 9 Test worker @coroutine#1
Collected 10 Test worker @coroutine#1
Emitting 10 Test worker @coroutine#1
Collected in 3169 ms

 
  • 如何解决背压?

通过缓存进行性能优化

10.1、buffer 操作符

并发运行流中发射元素的代码

注意:for (i in 1…10) 这里用的是 1到 10,原因是 for循环 有耗时问题,通过打印时间戳在 for (i in 1…x) 上下,发现 for (i in 1…x) 这行代码有时耗时超过200毫秒,目前不知是何问题,特此记录,为方便对比优化时长,使用1到10.

    @Test
    fun `test flow back pressure buffer`() = runBlocking<Unit> {
   
        val time = measureTimeMillis {
   
            simpleFlow8()
                .buffer(10) //缓存发射事件
                .collect {
    value ->
                    delay(200)   //处理这个元素消耗 200ms
                    println("Collected $value ${
     Thread.currentThread().name}")
                }
        }
        println("Collected in $time ms")
    }
Emitting 1 Test worker @coroutine#2
Emitting 2 Test worker @coroutine#2
Collected 1 Test worker @coroutine#1
Emitting 3 Test worker @coroutine#2
Emitting 4 Test worker @coroutine#2
Collected 2 Test worker @coroutine#1
Emitting 5 Test worker @coroutine#2
Emitting 6 Test worker @coroutine#2
Collected 3 Test worker @coroutine#1
Emitting 7 Test worker @coroutine#2
Emitting 8 Test worker @coroutine#2
Collected 4 Test worker @coroutine#1
Emitting 9 Test worker @coroutine#2
Emitting 10 Test worker @coroutine#2
Collected 5 Test worker @coroutine#1
Collected 6 Test worker @coroutine#1
Collected 7 Test worker @coroutine#1
Collected 8 Test worker @coroutine#1
Collected 9 Test worker @coroutine#1
Collected 10 Test worker @coroutine#1
Collected in 2398 ms

 

10.2、 flowOn

flowOn(),修改流上下文,达到异步处理的效果,从而优化背压

    @Test
    fun `test flow back pressure flowOn`() = runBlocking<Unit> {
   
        val time = measureTimeMillis {
   
            simpleFlow8()
                .flowOn(Dispatchers.IO)
                .collect {
    value ->
                    delay(200)   //处理这个元素消耗 200ms
                    println("Collected $value ${
     Thread.currentThread().name}")
                }
        }
        println("Collected in $time ms")
    }
Emitting 1 DefaultDispatcher-worker-1 @coroutine#2
Emitting 2 DefaultDispatcher-worker-1 @coroutine#2
Collected 1 Test worker @coroutine#1
Emitting 3 DefaultDispatcher-worker-1 @coroutine#2
Emitting 4 DefaultDispatcher-worker-1 @coroutine#2
Collected 2 Test worker @coroutine#1
Emitting 5 DefaultDispatcher-worker-1 @coroutine#2
Emitting 6 DefaultDispatcher-worker-1 @coroutine#2
Collected 3 Test worker @coroutine#1
Emitting 7 DefaultDispatcher-worker-1 @coroutine#2
Emitting 8 DefaultDispatcher-worker-1 @coroutine#2
Collected 4 Test worker @coroutine#1
Emitting 9 DefaultDispatcher-worker-1 @coroutine#2
Emitting 10 DefaultDispatcher-worker-1 @coroutine#2
Collected 5 Test worker @coroutine#1
Collected 6 Test worker @coroutine#1
Collected 7 Test worker @coroutine#1
Collected 8 Test worker @coroutine#1
Collected 9 Test worker @coroutine#1
Collected 10 Test worker @coroutine#1
Collected in 2385 ms

 

10.3、conflate 操作符

conflate(),合并发射项,处理最新的值,不对每个值进行处理;

    @Test
    fun `test flow back pressure conflate`() = runBlocking<Unit> {
   
        val time = measureTimeMillis {
   
            simpleFlow8()
                .conflate()
                .collect {
    value ->
                    delay(200)   //处理这个元素消耗 200ms
                    println("Collected $value ${
     Thread.currentThread().name}")
                }
        }
        println("Collected in $time ms")
    }
Emitting 1 Test worker @coroutine#2
Emitting 2 Test worker @coroutine#2
Collected 1 Test worker @coroutine#1
Emitting 3 Test worker @coroutine#2
Emitting 4 Test worker @coroutine#2
Collected 2 Test worker @coroutine#1
Emitting 5 Test worker @coroutine#2
Emitting 6 Test worker @coroutine#2
Collected 4 Test worker @coroutine#1
Emitting 7 Test worker @coroutine#2
Emitting 8 Test worker @coroutine#2
Collected 6 Test worker @coroutine#1
Emitting 9 Test worker @coroutine#2
Emitting 10 Test worker @coroutine#2
Collected 8 Test worker @coroutine#1
Collected 10 Test worker @coroutine#1
Collected in 1554 ms

 

10.4、collectLatest 操作符

collectLatest(),取消并重新发射最后一个值

    @Test
    fun `test flow back pressure collectLatest`() = runBlocking<Unit> {
   
        val time = measureTimeMillis {
   
            simpleFlow8()
                .collectLatest {
    value ->
                    delay(200)   //处理这个元素消耗 200ms
                    println("Collected $value ${
     Thread.currentThread().name}")
                }
        }
        println("Collected in $time ms")
    }
Emitting 1 Test worker @coroutine#2
Emitting 2 Test worker @coroutine#2
Emitting 3 Test worker @coroutine#2
Emitting 4 Test worker @coroutine#2
Emitting 5 Test worker @coroutine#2
Emitting 6 Test worker @coroutine#2
Emitting 7 Test worker @coroutine#2
Emitting 8 Test worker @coroutine#2
Emitting 9 Test worker @coroutine#2
Emitting 10 Test worker @coroutine#2
Collected 10 Test worker @coroutine#12
Collected in 1648 ms

二、操作符

1、变换操作符

1.1、buffer (缓存)

上面背压有栗子

1.2、map (变换)

1.2.1、map

map 是变换元素

data class Student(var name: String, var age: Int)
    private suspend fun performRequest(age: Int): Student {
   
        delay(500)
        return Student("这是name", age)
    }

    @Test
    fun `test map flow operator`() = runBlocking<Unit> {
   
        (1..3).asFlow()
            .map {
    request -> performRequest(request) }
            .collect {
    value -> println(value) }
    }
Student(name=这是name, age=1)
Student(name=这是name, age=2)
Student(name=这是name, age=3)

1.2.2、mapNotNull (不空的下发)

    @Test
    fun `test mapNotNull flow operator`() = runBlocking<Unit> {
   
        flow {
   
            emit(1)
            emit(3)
            emit(2)
        }
            .mapNotNull {
    request ->
                if (1 == request) {
   
                    null
                } else {
   
                    Student("这是name", request)
                }
            }
            .collect {
    value -> println(value) }
    }

 
Student(name=这是name, age=3)
Student(name=这是name, age=2)

1.2.3、mapLatest

当有新值发送时,如果上个转换还没结束,会取消掉,用法同map

    @Test
    fun `test mapLatest flow operator`() = runBlocking<Unit> {
   
        flow {
   
            emit(1)
            emit(2)
            emit(3)
        }.mapLatest {
   
            if (2 == it) delay(100L)
            "it is $it"
        }.collect {
   
            println(it)
        }
    }

1.3、transform (一转多)

    @Test
    fun `test transform flow operator`() = runBlocking<Unit> {
   
        (1..3).asFlow()
            .transform {
    request ->
                emit("Making request $request")
                emit(performRequest(request))
            }.collect {
    value -> println(value) }
    }
Making request 1
Student(name=这是name, age=1)
Making request 2
Student(name=这是name, age=2)
Making request 3
Student(name=这是name, age=3)

1.4、reduce (累*加减乘除)

    @Test
    fun `test reduce operator`() = runBlocking<Unit> {
   
        println(flow<Int> {
   
            emit(1)
            emit(1)
            emit(2)
            emit(3)
            emit(3)
            emit(4)
        }.reduce {
    accumulator, value -> accumulator + value })
    }

1.5、fold(累*加减乘除 and 拼接)

    @Test
    fun `test fold + operator`() = runBlocking<Unit> {
   
        println(flow<Int> {
   
            emit(1)
            emit(1)
            emit(2)
            emit(3)
            emit(3)
            emit(4)
        }.fold(3) {
    accumulator, value -> accumulator + value })
    }
17
    @Test
    fun `test fold - operator`() = runBlocking<Unit> {
   
        println(flow<Int> {
   
            emit(2)
            emit(3)
        }.fold(18) {
    accumulator, value -> accumulator - value })
    }
13
    @Test
    fun `test fold multiply by operator`() = runBlocking<Unit> {
   
        println(flow<Int> {
   
            emit(1)
            emit(1)
            emit(2)
            emit(3)
        }.fold(3) {
    accumulator, value -> accumulator * value })
    }
18
    @Test
    fun `test fold devide operator`() = runBlocking<Unit> {
   
        println(flow<Int> {
   
            emit(2)
            emit(3)
        }.fold(18) {
    accumulator, value -> accumulator / value })
    }
3
  • 拼接
    @Test
    fun `test fold joint operator`() = runBlocking<Unit> {
   
        println(flow<Int> {
   
            emit(1)
            emit(2)
            emit(3)
        }.fold("拼接") {
    accumulator, value -> return@fold "$accumulator =+= $value" })
    }
拼接 =+= 1 =+= 2 =+= 3

1.6、flatMapConcat (有序变换)

元素会变换完,以流的形式继续下发,并且某个元素需要耗时,它后面的元素会等待。

    @Test
    fun `test flatMapConcat operator`() = runBlocking<Unit> {
   
        (1..5).asFlow()
            .onEach {
    delay(100) }
            .flatMapConcat {
    num ->
                flow {
   
                    if (3==num){
   
                        delay(200)
                    }
                    emit("num: $num")
                }
            }.collect {
   
                println("value -> $it")
            }
    }
value -> num: 1
value -> num: 2
value -> num: 3
value -> num: 4
value -> num: 5

1.7、flatMapMerge (无序变换)

元素会变换完,以流的形式继续下发,并且某个元素需要耗时,它后面的元素不会等待。

    @Test
    fun `test flatMapMerge operator`() = runBlocking<Unit> {
   
        (1..5).asFlow()
            .onEach {
    delay(100) }
            .flatMapMerge() {
    num ->
                flow {
   
                    if (3==num){
   
                        delay(200)
                    }
                    emit("num: $num")
                }
            }.collect {
   
                println("value -> $it")
            }
    }
value -> num: 1
value -> num: 2
value -> num: 4
value -> num: 3
value -> num: 5

1.8、flatMapLatest (截留)

快速执行的事件都正常下发,
当有新值发送时,如果上个转换还没结束,会上取消掉上一个,直接下发新值。

    @Test
    fun `test flatMapLatest operator`() = runBlocking<Unit> {
   
        (1..5).asFlow()
            .onEach {
    delay(100) }
            .flatMapLatest() {
    num ->
                flow {
   
                    if (3 == num) {
   
                        delay(200)
                    }
                    emit("num: $num")
                    emit("num2: $num")
                }
            }.collect {
   
                println("value -> $it")
            }
    }

 
value -> num: 1
value -> num2: 1
value -> num: 2
value -> num2: 2
value -> num: 4
value -> num2: 4
value -> num: 5
value -> num2: 5

2、过滤型操作符

2.1、take (截留)

跟Rxjava一样

    fun numbers() = flow<Int> {
   
        try {
   
            emit(1)
            emit(2)
            println("This line will not execute")
            emit(3)
        } finally {
   
            println("Finally in numbers")
        }
    }

    @Test
    fun `test limit length operator`() = runBlocking<Unit> {
   
        //take(2),表示 当计数元素被消耗时,原始流被取消
        numbers().take(2).collect {
    value -> println(value) }
    }

 
1
2
Finally in numbers

2.1.2、takeWhile

找到第一个不满足条件的值,发送它之前的值,和dropWhile相反

    @Test
    fun `test takeWhile operator`() = runBlocking<Unit> {
   
        flow<Int> {
   
            emit(2)
            emit(1)
            emit(3)
            emit(4)
            emit(1)
        }.takeWhile {
    it < 2 }
            .collect {
    value -> println(value) }
    }

如上什么也不会输出;

    @Test
    fun `test takeWhile operator`() = runBlocking<Unit> {
   
        flow<Int> {
   
            emit(1)
            emit(2)
            emit(3)
            emit(4)
            emit(1)
        }.takeWhile {
    it < 2 }
            .collect {
    value -> println(value) }
    }

会输出 1

2.2、filter(满足条件下发)

跟Rxjava一样

    @Test
    fun `test filter operator`() = runBlocking<Unit> {
   
        numbers().filter {
   
            it == 2
        }.collect {
    value -> println(value) }
    }

2.2.2、filterNotNull (不空的下发)

    @Test
    fun `test filterNotNull flow operator`() = runBlocking<Unit> {
   
        flow {
   
            emit(1)
            emit(3)
            emit(null)
            emit(2)
        }
            .filterNotNull ()
            .collect {
    value -> println(value) }
    }
1
3
2

2.2.3、filterNot(符合条件的值将被丢弃)

筛选不符合条件的值,相当于filter取反

    @Test
    fun `test filterNot operator`() = runBlocking<Unit> {
   
        flow<Int> {
   
            emit(1)
            emit(2)
            emit(3)
        }.filterNot {
   
            it > 2
        }.collect {
    value -> println(value) }
    }
1
2

2.2.4、filterInstance (筛选符合类型的值)

对标rxjava中的ofType

筛选符合类型的值(不符合类型的值将被丢弃)

    @Test
    fun `test filterInstance operator`() = runBlocking<Unit> {
   
        flow<Any> {
   
            emit(1)
            emit("2")
            emit(3)
            emit("str")
        }.filterIsInstance<String>()
            .collect {
    value -> println(value) }
    }
2
str

2.3、skip 和 drop(跳过)

    @Test
    fun `test skip operator`() = runBlocking<Unit> {
   
        numbers()
            .drop(2)
        .collect {
    value -> println(value) }
    }

输出

3

2.3.2、dropWhile

找到第一个不满足条件的值,继续发送它和它之后的值

    @Test
    fun `test dropWhile operator`() = runBlocking<Unit> {
   
        numbers()
            .dropWhile {
    it <= 2 }
            .collect {
    value -> println(value) }
    }
This line will not execute
3
Finally in numbers

2.4、distinctUntilChanged (过滤重复)

    @Test
    fun `test distinctUntilChanged operator`() = runBlocking<Unit> {
   
        flow<Int> {
   
            emit(1)
            emit(1)
            emit(2)
            emit(3)
            emit(3)
            emit(4)
        }
            .distinctUntilChanged()
            .collect {
    value -> println(value) }
    }

2.4.2、distinctUntilChangedBy

判断两个连续值是否重复,可以设置是否丢弃重复值。
去重规则有点复杂,没完全懂

    @Test
    fun `test distinctUntilChangedBy operator`() = runBlocking<Unit> {
   
        flowOf(
            Student(name = "Jack", age = 11),
            Student(name = "Tom", age = 10),
            Student(name = "Jack", age = 12),
            Student(name = "Jack", age = 13),
            Student(name = "Tom", age = 11)
        )
            .distinctUntilChangedBy {
    it.name == "Jack" }
            .collect {
    //第三个Stu将被丢弃
                println(it.toString())
            }
    }
Student(name=Jack, age=11)
Student(name=Tom, age=10)
Student(name=Jack, age=12)
Student(name=Tom, age=11)

2.5、single (判断是否一个事件)

用于确保 flow 输出值唯一。若只有一个值,则可以正常执行,若输出的值不止只有一个的时候,就会抛出异常:

    @Test
    fun `test single operator`() = runBlocking<Unit> {
   
        try {
   
            println(flow<Int> {
   
                emit(1)
                emit(1)
                emit(2)
                emit(3)
                emit(3)
                emit(4)
            }.single())
        } catch (e: Exception) {
   
            println("e =$e")
        }
    }

如果一个事件,就正常执行;否则异常。

e =java.lang.IllegalArgumentException: Flow has more than one element

2.6、first (截留第一个事件)

    @Test
    fun `test first operator`() = runBlocking<Unit> {
   
        println(flow<Int> {
   
            emit(1)
            emit(1)
            emit(2)
            emit(3)
            emit(3)
            emit(4)
        }.first())
    }
1

2.7、debounce (防抖动)

    @Test
    fun `test debounce operator`() = runBlocking<Unit> {
   
        flowOf(
            Student(name = "Jack", age = 11),
            Student(name = "Tom", age = 10),
            Student(name = "Jack", age = 12),
            Student(name = "Jack", age = 13),
            Student(name = "Tom", age = 11)
        )
            .onEach {
   
                if (it.name == "Jack" && it.age == 13)
                    delay(500)
            }
            .debounce(500)
            .collect {
    //第三个Stu将被丢弃
                println(it.toString())
            }
    }

 
Student(name=Jack, age=12)
Student(name=Tom, age=11)

2.8、conflate

见 10.3、conflate

仅保留最新值, 内部就是 buffer(CONFLATED``)

2.9、sample (周期采样)

固定周期采样 ,给定一个时间周期,保留周期内最后发出的值,其他的值将被丢弃

sample操作符与debounce操作符有点像,但是却限制了一个周期性时间,sample操作符获取的是一个周期内的最新的数据,可以理解为debounce操作符增加了周期的限制。

    @Test
    fun `test sample operator`() = runBlocking<Unit> {
   
        flow {
   
            repeat(10) {
   
                delay(50)
                emit(it)
            }
        }.sample(100).collect {
   
            println(it)
        }
    }
0
2
4
6
8

3、组合型操作符

3.1、count (计数)

    @Test
    fun `test count operator`() = runBlocking<Unit> {
   
        println(flow<Int> {
   
            emit(1)
            emit(1)
            emit(2)
            emit(3)
            emit(3)
            emit(4)
        }
            .count())
    }

3.2、zip (合并元素)

跟Rxjava一样

    @Test
    fun `test zip operator`() = runBlocking<Unit> {
   
        val nameFlow = mutableListOf("小红", "小黑").asFlow()
        val numFlow = (1..3).asFlow()
        nameFlow.zip(numFlow) {
    string, num ->
            "$string$num"
        }.collect {
   
            println("value -> $it")
        }
    }

3.3、combine(合并元素)

    @Test
    fun `test combine operator`() = runBlocking<Unit> {
   
        val nameFlow = mutableListOf("小红", "小黑").asFlow()
        val numFlow = (1..3).asFlow()
        nameFlow.combine(numFlow) {
    string, num ->
            "$string$num"
        }.collect {
   
            println("value -> $it")
        }
    }
value -> 小红:1
value -> 小黑:2
value -> 小黑:3

3.4、merge (合并成流)

merge 是将两个flow合并起来,将每个值依次发出来

    @Test
    fun `test merge operator`() = runBlocking<Unit> {
   
        val flow1 = listOf(1, 2)
            .asFlow()
        val flow2 = listOf("one", "two", "three")
            .asFlow()
        merge(flow1, flow2)
            .collect {
    value -> println(value) }
    }
1
2
one
two
three

3.5、flattenConcat (展平流)

展平操作符 flattenConcat 以顺序方式将给定的流展开为单个流,通俗点讲,减少层级 ,感觉和merge这么像呢,这个不太理解啥用

    @Test
    fun `test flattenConcat operator`() = runBlocking<Unit> {
   
        val flow1 = listOf(1, 2)
            .asFlow()
        val flow2 = listOf("one", "two", "three")
            .asFlow()
        val flow3 = listOf("x", "xx", "xxx")
            .asFlow()
        flowOf(flow1, flow2, flow3)
            .flattenConcat()
            .collect {
    value -> println(value) }
    }
1
2
one
two
three
x
xx
xxx

3.6、flattenMerge(展平流)

flattenMerge 作用和 flattenConcat 一样,但是可以设置并发收集流的数量

    @Test
    fun `test flattenMerge operator`() = runBlocking<Unit> {
   
        val flow1 = listOf(1, 2)
            .asFlow()
        val flow2 = listOf("one", "two", "three")
            .asFlow()
        val flow3 = listOf("x", "xx", "xxx")
            .asFlow()
        flowOf(flow1, flow2, flow3)
            .flattenMerge(2)
            .collect {
    value -> println(value) }
    }
1
2
one
two
three
x
xx
xxx

4、异常操作符

4.1、catch (拦截异常)

对标rxjava 中的 onErrorResumeNext

Exception、Throwable、Error 都会拦截

    @Test
    fun `test catch operator`() = runBlocking<Unit> {
   
        (1..5).asFlow()
            .onEach {
    delay(100) }
            .onEach {
    if (2 == it) throw NullPointerException() }
            .catch {
   
                emit(110)
                println("e == $it")
            }
            .collect {
   
                println("value -> $it")
            }
    }
    @Test
    fun `test catch operator`() = runBlocking<Unit> {
   
        (1..5).asFlow()
            .onEach {
    delay(100) }
            .onEach {
    if (2 == it)
//                throw Exception("测试 异常")
//                throw Throwable("测试 异常")
                throw Error("测试 错误")
            }
            .catch {
   
                emit(110)
                println("e == $it")
            }
            .collect {
   
                println("value -> $it")
            }
    }

 
value -> 1
value -> 110
e == java.lang.Error: 测试 错误

4.2、retry (重试)

所有异常错误都拦截

  • 拦截次数
    @Test
    fun `test retry operator`() = runBlocking<Unit> {
   
        flow<Any> {
   
            emit(1)
            emit(2)
            throw Exception("异常")
            emit(3)
        }.retry(2)
            .catch {
    emit(110) }
            .collect {
    value -> println(value) }
    }
  • 拦截条件
    @Test
    fun `test retry 2 operator`() = runBlocking<Unit> {
   
        flow<Any> {
   
            emit(1)
            emit(2)
            throw Error("异常")
            emit(3)
        }.retry {
    it.message == "异常" }
            .catch {
    emit(110) }
            .collect {
    value -> println(value) }
    }

如上,满足拦截条件,所以会一直打印日志

1
2
1
2
1
2
1
2
1
... 不杀死程序一直打印

4.2.2、retryWhen

4.3、withTimeout (超时)

    @Test
    fun `test retry 2 operator`() = runBlocking<Unit> {
   
        withTimeout(2500) {
   
            flow<Any> {
   
                emit(1)
                throw Error("异常")
            }.retry {
    it.message == "异常" }
                .catch {
    emit(110) }
                .collect {
    value -> println(value) }
        }
    }

输出:

1
1
... 好多个
1
1
1

Timed out waiting for 2500 ms
kotlinx.coroutines.TimeoutCancellationException: Timed out waiting for 2500 ms
	(Coroutine boundary)
	at com.yoshin.kt.kotlindemo20220713.ExampleUnitTest$test retry 2 operator$1.invokeSuspend(ExampleUnitTest.kt:928)
Caused by: kotlinx.coroutines.TimeoutCancellationException: Timed out waiting for 2500 ms
	at app//kotlinx.coroutines.TimeoutKt.TimeoutCancellationException(Timeout.kt:184)
	at app//kotlinx.coroutines.TimeoutCoroutine.run(Timeout.kt:154)
	at app//kotlinx.coroutines.EventLoopImplBase$DelayedRunnableTask.run(EventLoop.common.kt:508)
	at app//kotlinx.coroutines.EventLoopImplBase.processNextEvent(EventLoop.common.kt:284)
	at app//kotlinx.coroutines.DefaultExecutor.run(DefaultExecutor.kt:108)
	at java.base@11.0.13/java.lang.Thread.run(Thread.java:834)

 

5、辅助操作符

5.1、onXXX

onXXX 的方法包含

onCompletion 流完成时调用
onStart 流开始时调用
onEach 元素下发时调用,每次下发都调用

对比rxjava 中:
onCompletion == doOnComplete
onStart == doOnSubscribe 或者 doOnLifecycle
onEach == doNext

    @Test
    fun `test do operator`() = runBlocking<Unit> {
   
        (1..5).asFlow()
            .onCompletion {
    println(" onCompletion == $it ") }
            .onStart {
    println(" onStart ") }
            .onEach {
    println(" onEach == $it ") }
            .collect {
   
                println("value -> $it")
            }
    }

5.2、delay (延时)

延时

    private fun events() = (1..3)
        .asFlow()
        .onEach {
    delay(100) }
        .flowOn(Dispatchers.Default)

5.3、measureTimeMillis (计时)

测量代码用时

    @Test
    fun `test flow back pressure`() = runBlocking<Unit> {
   
        val time = measureTimeMillis {
   
            simpleFlow8()
                .collect {
    value ->
                    delay(200)   //处理这个元素消耗 200ms
                    println("Collected $value ${
     Thread.currentThread().name}")
                }
        }
        println("Collected in $time ms")
    }

参考地址

笔记大部分内容来自动脑学院的文章和视频

动脑学院
https://blog.csdn.net/qq_30382601/article/details/121825461

Kotlin 之 协程(三)Flow异步流
https://blog.csdn.net/zx_android/article/details/122744370

Android Kotlin之Flow数据流:https://blog.csdn.net/u013700502/article/details/120526170


转载:https://blog.csdn.net/weixin_35691921/article/details/126709158
查看评论
* 以上用户言论只代表其个人观点,不代表本网站的观点或立场