小言_互联网的博客

MySQL事务管理

416人阅读  评论(0)

MySQL事务管理

事务的概念

事务的概念

  • 事务由一条或多条SQL语句组成,这些语句在逻辑上存在相关性,共同完成一个任务,事务主要用于处理操作量大,复杂度高的数据。比如转账就涉及多条SQL语句,包括查询余额(select)、在当前账户上减去指定金额(update)、在指定账户上加上对应金额(update)等,将这多条SQL语句打包便构成了一个事务。
  • MySQL同一时刻可能存在大量事务,如果不对这些事务加以控制,在执行时就可能会出现问题。比如单个事务内部的某些SQL语句执行失败,或是多个事务同时访问同一份数据导致数据不一致的问题。

因此一个完整的事务并不是简单的SQL集合,事务还需要满足如下四个属性:

  • 原子性: 一个事务中的所有操作,要么全部完成,要么全部不完成,不会结束在中间某个环节。事务在执行过程中如果发生错误,则会自动回滚到事务开始前的状态,就像这个事务从来没有执行过一样。
  • 持久性: 事务处理结束后,对数据的修改就是永久的,即便系统故障也不会丢失。
  • 隔离性: 数据库允许多个事务同时访问同一份数据,隔离性可以保证多个事务在并发执行时,不会因为由于交叉执行而导致数据的不一致。
  • 一致性: 在事务开始之前和事务结束以后,数据库的完整型没有被破坏,这表示写入的资料必须完全符合所有的预设规则,这包含资料的精确度、串联型以及后续数据库可以自发性地完成预定的工作。

上面的四个属性简称ACID:

  • 原子性(Atomicity,又称不可分割性)。
  • 一致性(Consistency)。
  • 隔离性(Isolation,又称独立性)。
  • 持久性(Durability)。

为什么会出现事务?

  • 事务被MySQL编写者设计出来,本质是为了当应用程序访问数据库的时候,事务能够简化我们的编程模型,不需要用户自己去考虑各种各样的潜在错误和并发问题。
  • 如果MySQL只是单纯的提供数据存储服务,那么用户在访问数据库时就需要自行考虑各种潜在问题,包括网络异常、服务器宕机等。因此事务本质是为了应用服务的,而不是伴随着数据库系统天生就有的。

事务的版本支持

事务的版本支持

通过show engines命令可以查看数据库引擎。如下:

说明一下:

  • Engine: 表示存储引擎的名称。
  • Support: 表示服务器对存储引擎的支持级别,YES表示支持,NO表示不支持,DEFAULT表示数据库默认使用的存储引擎,DISABLED表示支持引擎但已将其禁用。
  • Comment: 表示存储引擎的简要说明。
  • Transactions: 表示存储引擎是否支持事务,可以看到InnoDB存储引擎支持事务,而MyISAM存储引擎不支持事务。
  • XA: 表示存储引擎是否支持XA事务。
  • Savepoints: 表示存储引擎是否支持保存点。

事务的提交方式

查看事务的提交方式

事务常见的提交方式有两种,分别是自动提交和手动提交。

通过show命令查看autocommit全局变量,可以查看事务的自动提交是否被打开。如下:

说明一下: autocommit的值为ON表示自动提交被打开,值为OFF表示自动提交被关闭,即事务的提交方式为手动提交。

设置事务的提交方式

通过set命令设置autocommit全局变量的值,可以打开或关闭事务的自动提交。如下:

说明一下: 将autocommit的值设置为1表示打开自动提交,设置为0表示关闭自动提交,相当于将事务提交方式设置为手动提交。

事务的相关演示

准备测试表

为了便于演示,我们将MySQL的隔离级别设置成读未提交,也就是把隔离级别设置的比较低,方便看到实验现象。如下:

需要注意的是,设置全局隔离级别后当前会话的隔离级别不会改变,只会影响后续与MySQL新建立的连接,因此需要重启终端才能看到会话的隔离级别被成功设置。如下:

创建一个银行用户表,表中包含用户的id、姓名和账户余额。如下:

演示一:事务的常规操作

启动两个终端,左终端使用begin或start transaction命令启动一个事务,右终端查看银行用户表中的信息。如下:

左终端中的事务向表中插入一条记录,由于我们将隔离级别设置成了读未提交,因此在左终端中的事务使用commit提交之前,在右终端中就能查看到事务向表中插入的记录。如下:

左终端中的事务使用savepoint命令创建一个保存点,然后继续向表中插入一条记录,这时在右终端中也能看到新插入的这条记录。如下:

左终端中的事务使用rollback命令回滚到保存点,这时右终端在查看表中数据时就看不到刚才插入的第二条记录了。如下:

左终端中的事务使用rollback命令回滚到事务最开始,这时右终端在查看表中数据时就看不到任何记录了。如下:

说明一下:

  • 使用beginstart transaction命令,可以启动一个事务。
  • 使用savepoint 保存点命令,可以在事务中创建指定名称的保存点。
  • 使用rollback to 保存点命令,可以让事务回滚到指定保存点。
  • 使用rollback命令,可以直接让事务回滚到最开始。
  • 使用commit命令,可以提交事务,提交事务后就不能回滚了。

演示二:原子性

在左终端中启动一个事务,在右终端查看银行用户表中的信息。如下:

左终端中的事务向表中插入一条记录,由于隔离级别是读未提交,因此在右终端中能够查询到插入的这条记录。如下:

如果左终端中的事务在提交之前因为某些原因与MySQL断开连接,那么MySQL会自动让事务回滚到最开始,这时右终端中就看不到之前插入的记录了。如下:

演示三:持久性

在左终端中启动一个事务,在右终端查看银行用户表中的信息。如下:

左终端中的事务向表中插入一条记录,由于隔离级别是读未提交,因此在右终端中能够查询到插入的这条记录。如下:

左终端中的事务在提交后与MySQL断开连接,这时右终端中仍然可以看到之前插入的记录,因为事务提交后数据就被持久化了。如下:

演示四:begin会自动更改提交方式

通过show命令查看autocommit的值为ON,表示事务的提交方式是自动提交,此时银行用户表中有一条记录。如下:

在左终端中启动一个事务并向表中新插入一条记录,由于隔离级别是读未提交,因此在右终端中能够查询到新插入的这条记录。如下:

如果左终端中的事务在提交之前与MySQL断开连接,那么MySQL依旧会自动让事务回滚到最开始,这时右终端中就看不到之前新插入的记录了。如下:

也就是说,使用begin或start transaction命令启动的事务,都必须要使用commit命令手动提交,数据才会被持久化,与是否设置autocommit无关。

演示五:单条SQL与事务的关系

  • 实际全局变量autocommit是否被设置影响的是单条SQL语句,InnoDB中的每一条SQL都会默认被封装成事务。
  • autocommit为ON,则单条SQL语句执行后会自动被提交,如果为OFF,则SQL语句执行后需要使用commit进行手动提交。

比如通过show命令查看autocommit的值为ON,表示事务的提交方式是自动提交,此时银行用户表中有一条记录。如下:

在左终端中直接向表中新插入一条记录,由于隔离级别是读未提交,因此在右终端中肯定能够查询到新插入的这条记录。如下:

但就算左终端在执行单条SQL后不使用commit进行提交,而直接与MySQL断开连接,这时右终端仍然可以看到之前新插入的记录了,因为单条SQL在执行后被自动提交持久化了。如下:

相反,如果将autocommit设置为OFF,表示事务执行后需要手动提交,此时银行用户表中有两条记录。如下:

在左终端中直接向表中新插入一条记录,由于隔离级别是读未提交,因此在右终端中肯定能够查询到新插入的这条记录。如下:

但如果此时左终端在执行单条SQL后不使用commit进行提交,而直接与MySQL断开连接,那么这时右终端中就看不到之前新插入的记录了,因为这时单条SQL执行后需要使用commit手动提交后才会持久化,在commit之前与MySQL断开连接则会自动进行回滚操作。如下:

也就是说,实际我们之前一直都在使用单SQL事务,只不过autocommit默认是打开的,因此单SQL事务执行后自动就被提交了。

事务的隔离级别

  • MySQL服务可能会同时被多个客户端进程(线程)访问,访问的方式以事务的方式进行。
  • 一个事务可能由多条SQL语句构成,也就意味着任何一个事务,都有执行前、执行中和执行后三个阶段,而所谓的原子性就是让用户层要么看到执行前,要么看到执行后,执行中如果出现问题,可以随时进行回滚,所以单个事务对用户表现出来的特性就是原子性。
  • 但毕竟每个事务都有一个执行的过程,在多个事务各自执行自己的多条SQL时,仍然可能会出现互相影响的情况,比如多个事务同时访问同一张表,甚至是表中的同一条记录。
  • 数据库为了保证事务执行过程中尽量不受干扰,于是出现了隔离性的概念,而数据库为了允许事务在执行过程中受到不同程度的干扰,于是出现了隔离级别的概念。

数据库事务的隔离级别有以下四种:

  • 读未提交(Read Uncommitted): 在该隔离级别下,所有的事务都可以看到其他事务没有提交的执行结果,实际生产中不可能使用这种隔离级别,因为这种隔离级别相当于没有任何隔离性,会存在很多并发问题,如脏读、幻读、不可重复读等。
  • 读提交(Read Committed): 该隔离级别是大多数数据库的默认隔离级别,但它不是MySQL默认的隔离级别,它满足了隔离的简单定义:一个事务只能看到其他已经提交的事务所做的改变,但这种隔离级别存在不可重复读和幻读的问题。
  • 可重复读(Repeatable Read): 这是MySQL默认的隔离级别,该隔离级别确保同一个事务在执行过程中,多次读取操作数据时会看到同样的数据,即解决了不可重复读的问题,但这种隔离级别下仍然存在幻读的问题。
  • 串行化(Serializable): 这是事务的最高隔离级别,该隔离级别通过强制事务排序,使之不可能相互冲突,从而解决了幻读问题。它在每个读的数据行上面加上共享锁,但是可能会导致超时和锁竞争问题,这种隔离级别太极端,实际生成中基本不使用。

说明一下:

  • 虽然数据库事务的隔离级别有以上四种,但一个稳态的数据库只会选择这其中的一种,作为自己的默认隔离级别。但数据库默认的隔离级别有时可能并不满足上层的业务需求,因此数据库提供了这四种隔离级别,可以让我们自行设置。
  • 隔离级别基本上都是通过加锁的方式实现的,不同的隔离级别对锁的使用是不同的,常见的有表锁、行锁、写锁、间隙锁(GAP)、Next-Key锁(GAP+行锁)等。

查看与设置隔离级别

查看全局隔离级别

通过select @@global.tx_isolation命令,可以查看全局隔离级别。如下:

查看会话隔离级别

通过select @@session.tx_isolation命令,可以查看当前会话的隔离级别。如下:

此外,通过select @@tx_isolation命令,也可以查看当前会话的隔离级别。如下:

设置会话隔离级别

通过set session transaction isolation level 隔离级别命令,可以设置当前会话的隔离级别。如下:

说明一下: 设置会话的隔离级别只会影响当前会话,新起的会话依旧采用全局隔离级。

设置全局隔离级别

通过set global transaction isolation level 隔离级别命令,可以设置全局隔离级别。如下:

说明一下: 设置全局隔离级别会影响后续的新会话,但当前会话的隔离级别没有发生变化,如果要让当前会话的隔离级别也改变,则需要重启会话。

读未提交(Read Uncommitted)

读未提交(Read Uncommitted)

启动两个终端,将隔离级别都设置为读未提交,并查看此时银行用户表中的数据。如下:

在两个终端各自启动一个事务,左终端中的事务所作的修改在没有提交之前,右终端中的事务就已经能够看到了。如下:

说明一下:

  • 读未提交是事务的最低隔离级别,几乎没有加锁,虽然效率高,但是问题比较多,所以严重不建议使用。
  • 一个事务在执行过程中,读取到另一个执行中的事务所做的修改,但是该事务还没有进行提交,这种现象叫做脏读。

读提交(Read Committed)

读提交(Read Committed)

启动两个终端,将隔离级别都设置为读提交,并查看此时银行用户表中的数据。如下:

在两个终端各自启动一个事务,左终端中的事务所作的修改在没有提交之前,右终端中的事务无法看到。如下:

只有当左终端中的事务提交后,右终端中的事务才能看到修改后的数据。如下:

说明一下:

  • 一个事务在执行过程中,两个相同的select查询得到了不同的数据,这种现象叫做不可重复读。

可重复读(Repeatable Read)

可重复读(Repeatable Read)

启动两个终端,将隔离级别都设置为可重复读,并查看此时银行用户表中的数据。如下:

在两个终端各自启动一个事务,左终端中的事务所作的修改在没有提交之前,右终端中的事务无法看到。如下:

并且当左终端中的事务提交后,右终端中的事务仍然看不到修改后的数据。如下:

只有当右终端中的事务提交后再查看表中的数据,这时才能看到修改后的数据。如下:

说明一下:

  • 在可重复读隔离级别下,一个事务在执行过程中,相同的select查询得到的是相同的数据,这就是所谓的可重复读。
  • 一般的数据库在可重复读隔离级别下,update数据是满足可重复读的,但insert数据会存在幻读问题,因为隔离性是通过对数据加锁完成的,而新插入的数据原本是不存在的,因此一般的加锁无法屏蔽这类问题。
  • 一个事务在执行过程中,相同的select查询得到了新的数据,如同出现了幻觉,这种现象叫做幻读。

MySQL解决了可重复读隔离级别下的幻读问题,比如重新在这两个终端各自启动一个事务,左终端中的事务向表中插入数据的在没有提交之前,右终端中的事务无法看到。如下:

并且当左终端中的事务提交后,右终端中的事务仍然看不到新插入的数据。如下:

只有当右终端中的事务提交后再查看表中的数据,这时才能看到新插入的数据。如下:

说明一下:

  • MySQL是通过Next-Key锁(GAP+行锁)来解决幻读问题的。

串行化(Serializable)

串行化(Serializable)

启动两个终端,将隔离级别都设置为串行化,并查看此时银行用户表中的数据。如下:

在两个终端各自启动一个事务,如果这两个事务都对表进行的是读操作,那么这两个事务可以并发执行,不会被阻塞。如下:

但如果这两个事务中有一个事务要对表进行写操作,那么这个事务就会立即被阻塞。如下:

直到访问这张表的其他事务都提交后,这个被阻塞的事务才会被唤醒,然后才能对表进行修改操作。如下:

说明一下:

  • 串行化是事务的最高隔离级别,多个事务同时进行读操作时加的是共享锁,因此可以并发执行读操作,但一旦需要进行写操作,就会进行串行化,效率很低,几乎不会使用。

隔离级别总结

隔离级别总结

对MySQL中的隔离级别总结如下:

隔离级别 脏读 不可重复读 幻读 加锁读
读未提交(read uncommitted) 不加锁
读已提交(read committed) X 不加锁
可重复读(repeatable read) X X X 不加锁
可串行化(serializable) X X X 加锁

√:会发生该问题
X:不会发生该问题

说明一下:

  • 隔离级别越严格,安全性越高,但数据库的并发性能也就越低,在选择隔离级别时往往需要在两者之间找一个平衡点。
  • 表中只写出了各种隔离级别下进行读操作时是否需要加锁,因为无论哪种隔离级别,只要需要进行写操作就一定需要加锁。

关于一致性

关于一致性

事务执行的结果,必须使数据库从一个一致性状态,变到另一个一致性状态,当数据库只包含事务成功提交的结果时,数据库就处于一致性状态。

  • 事务在执行过程中如果发生错误,则需要自动回滚到事务最开始的状态,就像这个事务从来没有执行过一样,即一致性需要原子性来保证。
  • 事务处理结束后,对数据的修改必须是永久的,即便系统故障也不能丢失,即一致性需要持久性来保证。
  • 多个事务同时访问同一份数据时,必须保证这多个事务在并发执行时,不会因为由于交叉执行而导致数据的不一致,即一致性需要隔离性来保证。
  • 此外,一致性与用户的业务逻辑强相关,如果用户本身的业务逻辑有问题,最终也会让数据库处于一种不一致的状态。

也就是说,一致性实际是数据库最终要达到的效果,一致性不仅需要原子性、持久性和隔离性来保证,还需要上层用户编写出正确的业务逻辑。

多版本并发控制

数据库的并发场景

数据库并发的场景无非如下三种:

  • 读-读并发:不存在任何问题,也不需要并发控制。
  • 读-写并发:有线程安全问题,可能会存在事务隔离性问题,可能遇到脏读、幻读、不可重复读。
  • 写-写并发:有线程安全问题,可能会存在两类更新丢失问题。

说明一下:

  • 写-写并发场景下的第一类更新丢失又叫做回滚丢失,即一个事务的回滚把另一个已经提交的事务更新的数据覆盖了,第二类更新丢失又叫做覆盖丢失,即一个事务的提交把另一个已经提交的事务更新的数据覆盖了。
  • 读-读并发不需要进行并发控制,写-写并发实际也就是对数据进行加锁,这里最值得讨论的是读-写并发,读-写并发是数据库当中最高频的场景,在解决读-写并发时不仅需要考虑线程安全问题,还需要考虑并发的性能问题。

多版本并发控制

  • 多版本并发控制(Multi-Version Concurrency Control,MVCC)是一种用来解决读写冲突的无锁并发控制,主要依赖记录中的3个隐藏字段、undo日志和Read View实现。
  • 为事务分配单向增长的事务ID,为每个修改保存一个版本,将版本与事务ID相关联,读操作只读该事务开始前的数据库快照。
  • MVCC保证读写并发时,读操作不会阻塞写操作,写操作也不会阻塞读操作,提高了数据库并发读写的性能,同时还可以解决脏读、幻读和不可重复读等事务隔离性问题。

记录中的3个隐藏字段

记录中的3个隐藏字段

数据库表中的每条记录都会有如下3个隐藏字段:

  • DB_TRX_ID:6字节,创建或最近一次修改该记录的事务ID。
  • DB_ROW_ID:6字节,隐含的自增ID(隐藏主键)。
  • DB_ROLL_PTR:7字节,回滚指针,指向这条记录的上一个版本。

说明一下:

  • 采用InnoDB存储引擎建立的每张表都会有一个主键,如果用户没有设置,InnoDB就会自动以DB_ROW_ID产生一个聚簇索引。
  • 此外,数据库表中的每条记录还有一个删除flag隐藏字段,用于表示该条记录是否被删除,便于进行数据回滚。

示例

创建一个学生表,表中包含学生的姓名和年龄。如下:

当向表中插入一条记录后,该记录不仅包含name和age字段,还包含三个隐藏字段。如下:

说明一下:

  • 假设插入该记录的事务的事务ID为9,那么该记录的DB_TRX_ID字段填的就是9。
  • 因为这是插入的第一条记录,所以隐式主键DB_ROW_ID字段填的就是1。
  • 由于这条记录是新插入的,没有历史版本,所以回滚指针DB_ROLL_PTR的值设置为null。
  • MVCC重点需要的就是这三个隐藏字段,实际还有其他隐藏字段,只不过没有画出。

undo日志

undo日志

MySQL的三大日志如下:

  • redo log:重做日志,用于MySQL崩溃后进行数据恢复,保证数据的持久性。
  • bin log:逻辑日志,用于主从数据备份时进行数据同步,保证数据的一致性。
  • undo log:回滚日志,用于对已经执行的操作进行回滚,保证事务的原子性。

MySQL会为上述三大日志开辟对应的缓冲区,用于存储日志相关的信息,必要时会将缓冲区中的数据刷新到磁盘。

说明一下:

  • MVCC的实现主要依赖三大日志中的undo log,记录的历史版本就是存储在undo log对应的缓冲区中的。

快照的概念

快照的概念

现在有一个事务ID为10的事务,要将刚才插入学生表中的记录的学生姓名改为“李四”:

  • 因为是要进行写操作,所以需要先给该记录加行锁。
  • 修改前,先将该行记录拷贝到undo log中,此时undo log中就有了一行副本数据。
  • 然后再将原始记录中的学生姓名改为“李四”,并将该记录的DB_TRX_ID改为10,回滚指针DB_ROLL_PTR设置成undo log中副本数据的地址,从而指向该记录的上一个版本。
  • 最后当事务10提交后释放锁,这时最新的记录就是学生姓名为“李四”的那条记录。

修改后的示意图如下:

现在又有一个事务ID为11的事务,要将刚才学生表中的那条记录的学生年龄改为38:

  • 因为是要进行写操作,所以需要先给该记录(最新的记录)加行锁。
  • 修改前,先将该行记录拷贝到undo log中,此时undo log中就又有了一行副本数据。
  • 然后再将原始记录中的学生年龄改为38,并将该记录的DB_TRX_ID改为11,回滚指针DB_ROLL_PTR设置成刚才拷贝到undo log中的副本数据的地址,从而指向该记录的上一个版本。
  • 最后当事务11提交后释放锁,这时最新的记录就是学生年龄为38的那条记录。

修改后的示意图如下:

此时我们就有了一个基于链表记录的历史版本链,而undo log中的一个个的历史版本就称为一个个的快照。

说明一下:

  • 所谓的回滚实际就是用undo log中的历史数据覆盖当前数据,而所谓的创建保存点就可以理解成是给某些版本做了标记,让我们可以直接用这些版本数据来覆盖当前数据。
  • 这种技术实际就是基于版本的写时拷贝,当需要进行写操作时先将最新版本拷贝一份到undo log中,然后再进行写操作,和父子进程为了保证独立性而进行的写时拷贝是类似的。

insert和delete的记录如何维护版本链?

  • 删除记录并不是真的把数据删除了,而是先将该记录拷贝一份放入undo log中,然后将该记录的删除flag隐藏字段设置为1,这样回滚后该记录的删除flag隐藏字段就又变回0了,相当于删除的数据又恢复了。
  • 新插入的记录是没有历史版本的,但是一般为了回滚操作,新插入的记录也需要拷贝一份放入undo log中,只不过被拷贝到undo log中的记录的删除flag隐藏字段被设置为1,这样回滚后就相当于新插入的数据就被删除了。

也就是说,增加、删除和修改数据都是可以形成版本链的。

当前读 VS 快照读

  • 当前读:读取最新的记录,就叫做当前读。
  • 快照读:读取历史版本,就叫做快照读。

事务在进行增删查改的时候,并不是都需要进行加锁保护:

  • 事务对数据进行增删改的时候,操作的都是最新记录,即当前读,需要进行加锁保护。
  • 事务在进行select查询的时候,既可能是当前读也可能是快照读,如果是当前读,那也需要进行加锁保护,但如果是快照读,那就不需要加锁,因为历史版本不会被修改,也就是可以并发执行,提高了效率,这也就是MVCC的意义所在。

而select查询时应该进行当前读还是快照读,则是由隔离级别决定的,在读未提交和串行化隔离级别下,进行的都是当前读,而在读提交和可重复读隔离级别下,既可能进行当前读也可能进行快照读。

undo log中的版本链何时才会被清除?

  • 在undo log中形成的版本链不仅仅是为了进行回滚操作,其他事务在执行过程中也可能读取版本链中的某个版本,也就是快照读。
  • 因此,只有当某条记录的最新版本已经修改并提交,并且此时没有其他事务与该记录的历史版本有关了,这时该记录在undo log中的版本链才可以被清除。

说明一下:

  • 对于新插入的记录来说,没有其他事务会访问它的历史版本,因此新插入的记录在提交后就可以将undo log中的版本链清除了。
  • 因此版本链在undo log中可能会存在很长时间,尤其是有其他事务和这个版本链相关联的时候,但这也没有坏处,这说明它是一个热数据。

Read View

Read View

  • 事务在进行快照读操作时会生成读视图Read View,在该事务执行快照读的那一刻,会生成数据库系统当前的一个快照,记录并维护系统当前活跃的事务ID。
  • Read View在MySQL源码中就是一个类,本质是用来进行可见性判断的,当事务对某个记录执行快照读的时候,对该记录创建一个Read View,根据这个Read View来判断,当前事务能够看到该记录的哪个版本的数据。

ReadView类的源码如下:

class ReadView {
   
	// 省略...
private:
	/** 高水位:大于等于这个ID的事务均不可见*/
	trx_id_t m_low_limit_id;
	
	/** 低水位:小于这个ID的事务均可见 */
	trx_id_t m_up_limit_id;
	
	/** 创建该 Read View 的事务ID*/
	trx_id_t m_creator_trx_id;
	
	/** 创建视图时的活跃事务id列表*/
	ids_t m_ids;
	
	/** 配合purge,标识该视图不需要小于m_low_limit_no的UNDO LOG,
	* 如果其他视图也不需要,则可以删除小于m_low_limit_no的UNDO LOG*/
	trx_id_t m_low_limit_no;
	
	/** 标记视图是否被关闭*/
	bool m_closed;
	
	// 省略...
};

 

部分成员说明:

  • m_ids: 一张列表,记录Read View生成时刻,系统中活跃的事务ID。
  • m_up_limit_id: 记录m_ids列表中事务ID最小的ID。
  • m_low_limit_id: 记录Read View生成时刻,系统尚未分配的下一个事务ID。
  • m_creator_trx_id: 记录创建该Read View的事务的事务ID。

由于事务ID是单向增长的,因此根据Read View中的m_up_limit_id和m_low_limit_id,可以将事务ID分为三个部分:

  • 事务ID小于m_up_limit_id的事务,一定是生成Read View时已经提交的事务,因为m_up_limit_id是生成Read View时刻系统中活跃事务ID中的最小ID,因此事务ID比它小的事务在生成Read View时一定已经提交了。
  • 事务ID大于等于m_low_limit_id的事务,一定是生成Read View时还没有启动的事务,因为m_low_limit_id是生成Read View时刻,系统尚未分配的下一个事务ID。
  • 事务ID位于m_up_limit_id和m_low_limit_id之间的事务,在生成Read View时可能正处于活跃状态,也可能已经提交了,这时需要通过判断事务ID是否存在于m_ids中来判断该事务是否已经提交。

示意图如下:

  • 一个事务在进行读操作时,只应该看到自己或已经提交的事务所作的修改,因此我们可以根据Read View来判断当前事务能否看到另一个事务所作的修改。
  • 版本链中的每个版本的记录都有自己的DB_TRX_ID,即创建或最近一次修改该记录的事务ID,因此可以依次遍历版本链中的各个版本,通过Read View来判断当前事务能否看到这个版本,如果不能则继续遍历下一个版本。

源码策略如下:

bool changes_visible(trx_id_t id, const table_name_t& name) const 
	MY_ATTRIBUTE((warn_unused_result))
{
   
	ut_ad(id > 0);
	//1、事务id小于m_up_limit_id(已提交)或事务id为创建该Read View的事务的id,则可见
	if (id < m_up_limit_id || id == m_creator_trx_id) {
   
		return(true);
	}
	check_trx_id_sanity(id, name);
	//2、事务id大于等于m_low_limit_id(生成Read View时还没有启动的事务),则不可见
	if (id >= m_low_limit_id) {
   
		return(false);
	}
	//3、事务id位于m_up_limit_id和m_low_limit_id之间,并且活跃事务id列表为空(即不在活跃列表中),则可见
	else if (m_ids.empty()) {
   
		return(true);
	}
	const ids_t::value_type* p = m_ids.data();
	//4、事务id位于m_up_limit_id和m_low_limit_id之间,如果在活跃事务id列表中则不可见,如果不在则可见
	return (!std::binary_search(p, p + m_ids.size(), id));
}

 

说明一下: 使用该函数时将版本的DB_TRX_ID传给参数id,该函数的作用就是根据Read View,判断当前事务能否看到这个版本。

RR与RC的本质区别

现象演示

启动两个终端,将隔离级别都设置为可重复读,并查看此时银行用户表中的数据。如下:

在两个终端各自启动一个事务,在左终端中的事务操作之前,先让右终端中的事务查看一下表中的信息。如下:

左终端中的事务对表中的信息进行修改并提交,右终端中的事务看不到修改后的数据。如下:

在右终端中使用select ... lock in share mode命令进行当前读,可以看到表中的数据确实是被修改了,只是右终端中的事务看不到而已。如下:

但如果修改一下SQL的执行顺序,在两个终端各自启动一个事务后,直接让左终端中的事务对表中的信息进行修改并提交,然后再让右终端中的事务进行查看,这时右终端中的事务就直接看到了修改后的数据。如下:

在右终端中使用select ... lock in share mode命令进行当前读,可以看到刚才读取到的确实是最新的数据。如下:

说明一下:

  • 上面两次实验的唯一区别在于,右终端中的事务在左终端中的事务修改数据之前是否进行过快照读。
  • 由于RR级别下要求事务内每次读取到的结果必须是相同的,因此事务首次进行快照读的地方,决定了该事务后续快照读结果的能力。

RR与RC的本质区别

  • 正是因为Read View生成时机的不同,从而造成了RC和RR级别下快照读的结果的不同。
  • 在RR级别下,事务第一次进行快照读时会创建一个Read View,将当前系统中活跃的事务记录下来,此后再进行快照读时就会直接使用这个Read View进行可见性判断,因此当前事务看不到第一次快照读之后其他事务所作的修改。
  • 而在RC级别下,事务每次进行快照读时都会创建一个Read View,然后根据这个Read View进行可见性判断,因此每次快照读时都能读取到被提交了的最新的数据。
  • RR级别下快照读只会创建一次Read View,所以RR级别是可重复读的,而RC级别下每次快照读都会创建新的Read View,所以RC级别是不可重复读的。

转载:https://blog.csdn.net/chenlong_cxy/article/details/128919989
查看评论
* 以上用户言论只代表其个人观点,不代表本网站的观点或立场