小言_互联网的博客

数据库系统概论——关系代数详解

269人阅读  评论(0)

1、关系代数概述

关系代数是一种抽象的查询语言,是关系数据操纵语言的一种传统表达方式,它是利用对关系的运算来表达查询的。

任何运算都是将一定的运算符作用于一定的运算对象上,得到预期的运算结果。

关系代数的运算对象是关系,运算结果亦为关系。

运算符:

  • 集合运算符
    • 将关系看成元组的集合
    • 从关系的“水平”方向即行的角度来进行运算
  • 专门的关系运算符
    • 不仅涉及而且涉及
  • 算术比较符
    • 辅助专门的关系运算符进行操作
  • 逻辑运算符
    • 辅助专门的关系运算符进行操作

常见的关系运算符如下:

1.1 传统的集合运算

设关系 R R R和关系 S S S是相容的, t t t代表元组变量,现将各种运算分别介绍如下:

(1)并(Union)

  • 关系 R R R与关系 S S S的并记作: R ∪ S = { t ∣ t ∈ R ∨ t ∈ S } R∪S=\{t|t∈R∨t∈S \} RS={ ttRtS}
  • 结果关系是由属于 R R R或属于 S S S的元组组成,且结果仍为 n n n目关系,但结果关系要消除重复元组。

举例:

R R R S S S

  • 具有相同的目 n n n(即两个关系都有n个属性)
  • 相应的属性取自同一个域

R ∪ S R∪S RS

  • 仍为 n n n目关系,由属于 R R R或属于 S S S的元组组成
    • R ∪ S = { t ∣ t ∈ R ∨ t ∈ S } R∪S=\{t|t∈R∨t∈S \} RS={ ttRtS}

具体如下图所示:

(2)交( Intersection)

  • 关系 R R R与关系 S S S的交记作: R ∩ S = { t ∣ t ∈ R ∧ t ∈ S } R∩S=\{t|t∈R∧t∈S \} RS={ ttRtS}
  • 结果关系由既属于 R R R又属于 S S S的元组组成,且仍为 n n n目关系。

举例:

R R R S S S

  • 具有相同的目 n n n
  • 相应的属性取自同一个域

R ∩ S R∩S RS

  • 仍为 n n n目关系,由既属于 R R R又属于 S S S的元组组成
    • R ∩ S = { t ∣ t ∈ R ∧ t ∈ S } R∩S=\{t|t∈R∧t∈S \} RS={ ttRtS}

具体如下图所示:

(3)差(Difference)

  • 关系R与关系S的差记作: R − S = { t ∣ t ∈ R ∧ t ∉ S } R-S=\{t|t∈R ∧t \notin S\} RS={ ttRt/S}
  • R R R S S S的差,结果关系由属于 R R R而不属于 S S S的所有元组组成,且仍为 n n n目关系,即在关系 R R R中减去 R R R S S S的相同元组。

举例:

R R R S S S

  • 具有相同的目 n n n
  • 相应的属性取自同一个域

R − S R - S RS

  • 仍为 n n n目关系,由属于 R R R而不属于 S S S的所有元组组成
    • R − S = { t ∣ t ∈ R ∧ t ∉ S } R-S=\{t|t∈R ∧t \notin S\} RS={ ttRt/S}

(4)广义笛卡尔积(Extended Cartesian Product)

  • 两个分别为 n n n目和 m m m目的关系, R R R S S S的广义笛卡尔积是一个 ( n + m ) (n+m) (n+m)列的元组的集合。
  • 元组的前 n n n列是关系 R R R的一个元组,后 m m m列是关系 S S S的一个元组。若 R R R k 1 k_1 k1个元组, S S S k 2 k_2 k2个元组,则关系 R R R和关系 S S S的广义笛卡尔积有 k 1 × k 2 k_1×k_2 k1×k2个元组。
  • 记作: R × S = { ( a 1 , a 2 , … a m , b 1 , b 2 , … b n ) ∣ ( a 1 , a 2 , … a m ) ∈ R ∧ ( b 1 , b 2 , … b n ) ∈ S } 。 R×S=\{(a_1,a_2,…a_m,b_1,b_2,…b_n)| (a_1,a_2,…a_m) ∈R ∧ (b_1,b_2,…b_n) ∈ S\}。 R×S={(a1,a2,am,b1,b2,bn)(a1,a2,am)R(b1,b2,bn)S}

严格地讲应该是广义的笛卡尔积

  • R R R: n n n目关系, k 1 k_1 k1个元组
  • S S S: m m m目关系, k 2 k_2 k2个元组

R × S R×S R×S

  • 列: m + n m+n m+n列元组的集合

    • 元组的前 n n n列是关系 R R R的一个元组
    • m m m列是关系 S S S的一个元组
  • 行: k 1 × k 2 k_1×k_2 k1×k2个元组

    具体如下图所示:

1.2 专门的关系运算

在讲解之前,我们先引入几个记号,这样有助于下面的理解,确实关系代数后半部分有点难理解。
(1) R , t ∈ R , t [ A i ] R,t\in R,t[A_i] R,tR,t[Ai]
设关系模式为 R ( A 1 , A 2 , … , A n ) R(A_1,A_2,…,A_n) R(A1A2An),它的一个关系设为 R R R t ∈ R t\in R tR表示 t t t R R R的一个元组, t [ A i ] t[A_i] t[Ai]则表示元组t中相应于属性 A i A_i Ai的一个分量。

(2) t r t s ⏞ \overbrace{t_rt_s} trts R R R n n n目关系, S S S m m m目关系。
t r ∈ R , t s ∈ S , t r t s ⏞ t_r\in R,t_s\in S, \overbrace{t_r t_s} trRtsStrts 称为元组的连接。 t r t s ⏞ \overbrace{t_r t_s} trts 是一个 n + m n + m n+m列的元组,前 n n n个分量为 R R R中的一个 n n n元组,后 m m m个分量为 S S S中的一个 m m m元组。
(3)象集 Z x Z_x Zx
给定一个关系 R ( X , Z ) R(X,Z) RX,Z X X X Z Z Z为属性组。当 t [ X ] = x t[X]=x t[X]=x时, x x x R R R中的象集(Images Set)为:
Z x = t [ Z ] ∣ t ∈ R , t [ X ] = x Z_x={t[Z]|t \in R,t[X]=x} Zx=t[Z]tRt[X]=x

它表示 R R R中属性组 X X X上值为 x x x的诸元组在 Z Z Z上分量的集合。

举例如下:

上面抽象的例子可能并不是特别容易理解,那么我们就拿生活中的实际例子进行解释:

学生-课程-选修关系:
学生关系Student、课程关系Course和选修关系SC


在上面的关系表中,我们可以把SC表看作一个关系R,它的属性组为学号,课程号以及成绩,即 R ( S n o , C n o , G r a d e ) R(Sno, Cno, Grade) R(Sno,Cno,Grade)。这时我们将SC表与上面那个例子对比可以看出,Sno为200215121的学号在关系R(SC表)中的象集为 S n o 200215121 = { 1 , 2 , 3 } Sno_{200215121}=\{1,2,3\} Sno200215121={ 123},以此类推,这样就比较容易理解一点。

1.2.1 选择运算

  • 选择又称为限制
  • 选择运算符的含义
    • 关系R上的选择操作是根据某些条件对关系R做水平分割,即从行的角度选择符合条件的元组。
  • 在关系R中选择满足给定条件的诸元组
    • 记作: σ F ( R ) = { t ∣ t ∈ R ∧ F ( t ) = ‘真’ } σF(R)=\{t|t∈R∧F(t)=‘真’\} σFR={ ttRF(t)=}
  • F:选择条件,是一个逻辑表达式,取逻辑值“真”或“假”。
  • 选择运算是从关系R中选取使逻辑表达式F为真的元组,是从行的角度进行的运算

F:选择条件,是一个逻辑表达式

  • 基本形式为: X 1 θ Y 1 X_1θY_1 X1θY1
  • θ θ θ:比较运算符 (>, ≥ ,<, ≤ ,=或 < > ) (>,≥,<,≤,=或<>) (>,,<,,=或<>
  • X 1 , Y 1 X_1,Y_1 X1Y1:属性名、常量、简单函数.
  • 属性名也可以用它的序号来代替;

以最上面的学生-课程-选修关系表举例说明更好理解:

[例1] 查询信息系(IS系)全体学生

σ S d e p t = ′ I S ′ ( S t u d e n t ) 或 σ 5 = ′ I S ′ ( S t u d e n t ) σ_{Sdept} = 'IS' (Student) 或 σ_5 ='IS'(Student) σSdept=IS(Student)σ5=IS(Student)

结果:

[例2] 查询年龄小于20岁的学生
σ S a g e < 20 ( S t u d e n t ) 或 σ 4 < 20 ( S t u d e n t ) σ_{Sage< 20}(Student) 或 σ_{4 < 20}(Student) σSage<20(Student)σ4<20(Student)

结果:

1.2.2 投影(Projection)

投影运算符的含义:

  • 从R中选择出若干属性列组成新的关系
    • π A ( R ) = t [ A ] ∣ t ∈ R π_A(R) = { t[A] | t \in R } πA(R)=t[A]tR
    • A:R中的属性列

投影操作主要是从列的角度进行运算:

但投影之后不仅取消了原关系中的某些列,而且还可能取消某些元组(避免重复行)

举例说明一下:
[例3] 查询学生的姓名和所在系
即求Student关系上学生姓名和所在系两个属性上的投影

π S n a m e , S d e p t ( S t u d e n t ) 或 π 2 , 5 ( S t u d e n t ) π_{Sname,Sdept}(Student) 或 π_{2,5}(Student) πSnameSdept(Student)π25(Student)

结果:

[例4] 查询学生关系Student中都有哪些系

π S d e p t ( S t u d e n t ) π_{Sdept}(Student) πSdept(Student)

结果:

由此可见,使用投影操作可以将关系表中的列单独拿出来组成新的关系表,这样方便我们可以更加清楚的查看自己想要的信息。

1.2.3 连接(Join)

连接也称为 θ θ θ连接

连接运算的含义:
从两个关系的笛卡尔积中选取属性间满足一定条件的元组

连接运算从 R 和 S R和S RS的广义笛卡尔积 R × S R×S R×S中选取( R R R关系)在 A A A属性组上的值与( S S S关系)在 B B B属性组上值满足比较关系 θ θ θ的元组

举例说明一下:
[例5]关系R和关系S 如下所示:

1.2.4 两类常用连接运算

(1)等值连接(equijoin)

  • 什么是等值连接?
    • θ为“=”的连接运算称为等值连接
  • 等值连接的含义
    • 从关系R与S的广义笛卡尔积中选取A、B属性值相等的
      那些元组,即等值连接为:

      举例说明:


      (2)自然连接(Natural join)
  • 自然连接是一种特殊的等值连接
    • 两个关系中进行比较的分量必须是相同的属性组
    • 在结果中把重复的属性列去掉
  • 自然连接的含义
    • R和S具有相同的属性组B


举例:


一般的连接操作是从行的角度进行运算。

自然连接还需要取消重复列,所以是同时从行和列的角度进行运算。

1.2.5 除(Division)

给定关系 R ( X , Y ) R (X,Y) R(XY) S ( Y , Z ) S (Y,Z) S(YZ),其中 X , Y , Z X,Y,Z XYZ为属性组。 R R R中的 Y Y Y S S S中的 Y Y Y可以有不同的属性名,但必须出自相同的域集。 R R R S S S的除运算得到一个新的关系 P ( X ) P(X) P(X) P P P R R R中满足下列条件的元组在 X X X 属性列上的投影:

元组在 X X X上分量值 x x x的象集 Y x Y_x Yx包含 S S S Y Y Y上投影的集合,记作:

关于象集的概念我们在前面已经提到了,在此直接举例子说明除:

[例6]设关系 R 、 S R、S RS分别为下图的(a)和(b), R ÷ S R÷S R÷S的结果为图©

通过上面的结果我们可以发现,关系 R R R中的 B 、 C B、C BC属性组,和关系 S S S中的 B 、 C B、C BC属性组的域都是相同的, R 与 S R与S RS的除运算得到了一个新的关系,我们将它当做 P ( A ) P(A) P(A) P P P R R R中满足上述条件的元组在 A A A属性列中的投影。

分析:
设关系 R , S R,S RS,分别为例6中的(a)和(b), R ÷ S R÷S R÷S的结果为图©,关系 R R R A A A可以取四个值 { a 1 , a 2 , a 3 , a 4 } , \{ a_1,a_2,a_3,a_4\}, { a1a2a3a4}, 其中:

  • a 1 a_1 a1的象集为 { ( b 1 , c 2 ) , ( b 2 , c 1 ),( b 2 , c 3 ) } \{(b_1,c_2),(b_2,c_1),(b_2,c_3)\} { b1c2,b2c1),(b2c3}
  • a 2 a_2 a2的象集为 { ( b 3 , c 7 ) , ( b 2 , C 3 ) } \{(b_3,c_7),(b_2,C_3)\} { b3c7,b2C3}
  • a 3 a_3 a3的象集为 { ( b 4 , c 6 ) } \{ (b_4,c_6) \} {(b4c6)}
  • a 4 a_4 a4的象集为 { ( b 6 , c 6 ) } \{(b_6,c_6)\} { b6c6}

S S S ( B , C ) (B,C) BC上的投影为 { ( b 1 , c 2 ),( b 2 , c 1 ) , ( b 2 , c 3 ) } \{(b_1,c_2),(b_2,c_1),(b_2,c_3)\} { b1c2),(b2c1,b2c3}

显然只有 a 1 a_1 a1的象集包含了 S S S ( B , C ) (B,C) (B,C)属性组上的投影,所以 R ÷ S = { a 1 } R÷S=\{a1\} R÷S={ a1}

除操作是同时从行和列角度进行运算

📢博客主页:https://blog.csdn.net/m0_63007797?spm=1011.2415.3001.5343
📢欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!
📢本文由 心无旁骛~ 原创,首发于 CSDN博客🙉
📢停下休息的时候不要忘了别人还在奔跑,希望大家抓紧时间学习,全力奔赴更美好的生活✨


转载:https://blog.csdn.net/m0_63007797/article/details/128779978
查看评论
* 以上用户言论只代表其个人观点,不代表本网站的观点或立场