小言_互联网的博客

基于准则匹配的图像对准

278人阅读  评论(0)

一、概述

  在图像处理相关的问题中,图像对准是一类典型的问题,也就是要将两幅图严丝合缝地对应起来。通常来讲,两幅图大小不一,一个是模板,一个是母图,也就是要在母图中搜寻定位到与模板图最为接近的区域。
  实现的方式有很多,惯常使用的是基于准则匹配的方法和基于特征匹配的方法。基于准则匹配,就是直接地对图的灰度值矩阵进行计算操作,以特定的准则遍历整个母图,找到与目标图(模板图)最相近的子区域;基于特征匹配,就是先提取出图像特征,再基于特征进行操作。这里对基于准则匹配的图像对准基本方法做简单介绍。

二、匹配准则

  常见的匹配准则有SAD、MAD、SSD、MSD、NCC。前四种是基于两个矩阵的向量差做运算,NCC是计算两个矩阵的相关系数。事实上,矩阵是一个高阶向量(二阶张量),对两个矩阵向量作差,就得到差向量,对差向量做分析运算,便可在一定程度上获得两个矩阵间的差异性信息。
A = ( a i j ) A=\left( a_{ij} \right) A=(aij), B = ( b i j ) B=\left( b_{ij} \right) B=(bij), i = 1 , 2 , . . . , M i=1,2,...,M i=1,2,...,M, j = 1 , 2 , . . . , N j=1,2,...,N j=1,2,...,N.则差向量 D = A − B = ( a i j − b i j ) D=AB=(aijbij) D=AB=(aijbij)

(1) SAD

  SAD,绝对误差算法(Sum of Absolute Differences),它是差向量D中各元素的绝对值之和,也就是L1范数,是两个向量间的曼哈顿距离。表达式为 S A D = ∑ i = 1 M ∑ j = 1 N ∣ a i j − b i j ∣ SAD=Mi=1Nj=1|aijbij| SAD=i=1Mj=1Naijbij

(2) MAD

  MAD,平均绝对误差算法(Mean Absolute Differences),它是在SAD基础上进一步求平均值。表达式为 M A D = 1 M × N ∑ i = 1 M ∑ j = 1 N ∣ a i j − b i j ∣ MAD=1M×NMi=1Nj=1|aijbij| MAD=M×N1i=1Mj=1Naijbij

(3) SSD

  SSD,误差平方和算法(Sum of Squared Differences),它是差向量D中各元素的平方和。表达式为 S S D = ∑ i = 1 M ∑ j = 1 N ( a i j − b i j ) 2 SSD=Mi=1Nj=1(aijbij)2 SSD=i=1Mj=1N(aijbij)2

(4) MSD

  MSD,平均误差平方和算法(Mean Square Differences),它是在SSD的基础上进一步求平均值。表达式为 M S D = 1 M × N ∑ i = 1 M ∑ j = 1 N ( a i j − b i j ) 2 MSD=1M×NMi=1Nj=1(aijbij)2 MSD=M×N1i=1Mj=1N(aijbij)2

(5) NCC

  NCC,归一化互相关算法(Normalized Cross Correlation)。若将两个矩阵看做两个随机变量,那么NCC就是两个变量之间的皮尔逊相关系数。同时,它也是两个矩阵向量在各自中心化之后彼此间空间夹角的余弦值。它的表达式为 N C C = ∑ i = 1 M ∑ j = 1 N ( a i j − E ( A ) ) ( b i j − E ( B ) ) ∑ i = 1 M ∑ j = 1 N ( a i j − E ( A ) ) 2 ⋅ ∑ i = 1 M ∑ j = 1 N ( b i j − E ( B ) ) 2 NCC=Mi=1Nj=1(aijE(A))(bijE(B))Mi=1Nj=1(aijE(A))2Mi=1Nj=1(bijE(B))2 NCC=i=1Mj=1N(aijE(A))2 i=1Mj=1N(bijE(B))2 i=1Mj=1N(aijE(A))(bijE(B))
  易知,ncc值的范围为 [ − 1 , 1 ] [−1,1] [1,1],越接近1,两个矩阵越相关;越接近-1,两个矩阵越不相关。


等同于皮尔逊相关系数
  皮尔逊相关系数,用以衡量两个变量间的线性相关性。它的表达式为 P e a r s o n = C o v ( X , Y ) D ( X ) ⋅ D ( Y ) = E ( X − E X ) ( Y − E Y ) D ( X ) ⋅ D ( Y ) Pearson=Cov(X,Y)D(X)D(Y)=E(XEX)(YEY)D(X)D(Y) Pearson=D(X) D(Y) Cov(X,Y)=D(X) D(Y) E(XEX)(YEY)  将两个矩阵看做两个随机变量代入,有 P e a r s o n = 1 M × N ∑ i = 1 M ∑ j = 1 N ( a i j − E ( A ) ) ( b i j − E ( B ) ) ∑ i = 1 M ∑ j = 1 N ( a i j − E ( A ) ) 2 M × N ⋅ ∑ i = 1 M ∑ j = 1 N ( b i j − E ( B ) ) 2 M × N = ∑ i = 1 M ∑ j = 1 N ( a i j − E ( A ) ) ( b i j − E ( B ) ) ∑ i = 1 M ∑ j = 1 N ( a i j − E ( A ) ) 2 ∑ i = 1 M ∑ j = 1 N ( b i j − E ( B ) ) 2 = N C C Pearson=1M×NMi=1Nj=1(aijE(A))(bijE(B))Mi=1Nj=1(aijE(A))2M×NMi=1Nj=1(bijE(B))2M×N=Mi=1Nj=1(aijE(A))(bijE(B))Mi=1Nj=1(aijE(A))2Mi=1Nj=1(bijE(B))2=NCC Pearson=M×Ni=1Mj=1N(aijE(A))2 M×Ni=1Mj=1N(bijE(B))2 M×N1i=1Mj=1N(aijE(A))(bijE(B))=i=1Mj=1N(aijE(A))2 i=1Mj=1N(bijE(B))2 i=1Mj=1N(aijE(A))(bijE(B))=NCC

等同于余弦距离
  余弦距离即空间向量夹角的余弦值,通常用以衡量两个向量间的差异度。它的表达式为 c o s θ = < X , Y > ∣ X ∣ ⋅ ∣ Y ∣ cosθ=<X,Y>|X||Y| cosθ=XY<X,Y>  将两个矩阵向量去中心化后代入,有 c o s θ = < A − E ( A ) , B − E ( B ) > ∣ A − E ( A ) ∣ ⋅ ∣ B − E ( B ) ∣ = ∑ i = 1 M ∑ j = 1 N ( a i j − E ( A ) ) ( b i j − E ( B ) ) ∑ i = 1 M ∑ j = 1 N ( a i j − E ( A ) ) 2 ∑ i = 1 M ∑ j = 1 N ( b i j − E ( B ) ) 2 = N C C cosθ=<AE(A),BE(B)>|AE(A)||BE(B)|=Mi=1Nj=1(aijE(A))(bijE(B))Mi=1Nj=1(aijE(A))2Mi=1Nj=1(bijE(B))2=NCC cosθ=AE(A)BE(B)<AE(A),BE(B)>=i=1Mj=1N(aijE(A))2 i=1Mj=1N(bijE(B))2 i=1Mj=1N(aijE(A))(bijE(B))=NCC

三、matlab实现

(1) SAD

clear all;
close all; clc;

%1.读取图片
img_A_dir = '.\data\lena.bmp';  %待寻母图
img_A_raw = imread(img_A_dir);
[r1,c1,d1] = size(img_A_raw);
if d1==3 %灰度化
    img_A = rgb2gray(img_A_raw);
else
    img_A = img_A_raw;
end

img_B_dir = '.\data\refer.bmp';  %模板图
img_B_raw = imread(img_B_dir);
[r2,c2,d2] = size(img_B_raw);
if d2==3
    img_B = rgb2gray(img_B_raw);
else
    img_B = img_B_raw;
end

%2.计算SAD矩阵
msad = zeros(r1-r2,c1-c2);

for i = 1:r1-r2
    for j = 1:c1-c2
        temp = img_A(i:i+r2-1,j:j+c2-1);        
        msad(i,j) = msad(i,j) + sum(sum(abs(temp - img_B)));    
    end
end

%3.定位匹配位置
min_sad = min(min(msad));
[x,y] = find(msad == min_sad);
x = x(1); %定位到的第一个位置
y = y(1);

%4.保存结果图
getImg = img_A_raw(x:x+r2-1,y:y+c2-1,1:3);
imwrite(getImg,'.\output\SAD_match.bmp');

fprintf('\n Done. \n');
在这里插入代码片

 

(2) MAD

clear all;
close all; clc;

%1.读取图片
img_A_dir = '.\data\lena.bmp';  %待寻母图
img_A_raw = imread(img_A_dir);
[r1,c1,d1] = size(img_A_raw);
if d1==3 %灰度化
    img_A = rgb2gray(img_A_raw);
else
    img_A = img_A_raw;
end

img_B_dir = '.\data\refer.bmp';  %模板图
img_B_raw = imread(img_B_dir);
[r2,c2,d2] = size(img_B_raw);
if d2==3
    img_B = rgb2gray(img_B_raw);
else
    img_B = img_B_raw;
end

%2.计算MAD矩阵
mmad = zeros(r1-r2,c1-c2);

for i = 1:r1-r2
    for j = 1:c1-c2
        temp = img_A(i:i+r2-1,j:j+c2-1);        
        mmad(i,j) = mmad(i,j) + sum(sum(abs(temp - img_B)))/(r2*c2);    
    end
end

%3.定位匹配位置
min_mad = min(min(mmad));
[x,y] = find(mmad == min_mad);
x = x(1); %定位到的第一个位置
y = y(1);

%4.保存结果图
getImg = img_A_raw(x:x+r2-1,y:y+c2-1,1:3);
imwrite(getImg,'.\output\MAD_match.bmp');

fprintf('\n Done. \n');

 

(3) SSD

clear all;
close all; clc;

%1.读取图片
img_A_dir = '.\data\lena.bmp';  %待寻母图
img_A_raw = imread(img_A_dir);
[r1,c1,d1] = size(img_A_raw);
if d1==3 %灰度化
    img_A = rgb2gray(img_A_raw);
else
    img_A = img_A_raw;
end

img_B_dir = '.\data\refer.bmp';  %模板图
img_B_raw = imread(img_B_dir);
[r2,c2,d2] = size(img_B_raw);
if d2==3
    img_B = rgb2gray(img_B_raw);
else
    img_B = img_B_raw;
end

%2.计算SSD矩阵
mssd = zeros(r1-r2,c1-c2);

for i = 1:r1-r2
    for j = 1:c1-c2
        temp = img_A(i:i+r2-1,j:j+c2-1);        
        mssd(i,j) = mssd(i,j) + sum(sum((temp - img_B).^2));    
    end
end

%3.定位匹配位置
min_ssd = min(min(mssd));
[x,y] = find(mssd == min_ssd);
x = x(1); %定位到的第一个位置
y = y(1);

%4.保存结果图
getImg = img_A_raw(x:x+r2-1,y:y+c2-1,1:3);
imwrite(getImg,'.\output\SSD_match.bmp');

fprintf('\n Done. \n');


 

(4) MSD

clear all;
close all; clc;

%1.读取图片
img_A_dir = '.\data\lena.bmp';  %待寻母图
img_A_raw = imread(img_A_dir);
[r1,c1,d1] = size(img_A_raw);
if d1==3 %灰度化
    img_A = rgb2gray(img_A_raw);
else
    img_A = img_A_raw;
end

img_B_dir = '.\data\refer.bmp';  %模板图
img_B_raw = imread(img_B_dir);
[r2,c2,d2] = size(img_B_raw);
if d2==3
    img_B = rgb2gray(img_B_raw);
else
    img_B = img_B_raw;
end

%2.计算MSD矩阵
mmsd = zeros(r1-r2,c1-c2);

for i = 1:r1-r2
    for j = 1:c1-c2
        temp = img_A(i:i+r2-1,j:j+c2-1);        
        mmsd(i,j) = mmsd(i,j) + sum(sum((temp - img_B).^2))/(r2*c2);    
    end
end

%3.定位匹配位置
min_msd = min(min(mmsd));
[x,y] = find(mmsd == min_msd);
x = x(1); %定位到的第一个位置
y = y(1);

%4.保存结果图
getImg = img_A_raw(x:x+r2-1,y:y+c2-1,1:3);
imwrite(getImg,'.\output\MSD_match.bmp');

fprintf('\n Done. \n');

 

(5) NCC

clear all;
close all; clc;

%1.读取图片
img_A_dir = '.\data\lena.bmp';  %待寻母图
img_A_raw = imread(img_A_dir);
[r1,c1,d1] = size(img_A_raw);
if d1==3 %灰度化
    img_A = rgb2gray(img_A_raw);
else
    img_A = img_A_raw;
end

img_B_dir = '.\data\refer.bmp';  %模板图
img_B_raw = imread(img_B_dir);
[r2,c2,d2] = size(img_B_raw);
if d2==3
    img_B = rgb2gray(img_B_raw);
else
    img_B = img_B_raw;
end

%2.计算NCC矩阵
mNCC = zeros(r1-r2,c1-c2);

for i = 1:r1-r2
    for j = 1:c1-c2
        
        temp = img_A(i:i+r2-1,j:j+c2-1);   
        
        mean_temp = mean(temp(:)); %temp均值
        mean_B = mean(img_B(:));  %img_B均值      
        
        inp = sum(sum((temp - mean_temp).*(img_B - mean_B))); %两向量内积        
        mod1 = sqrt(sum(sum((temp - mean_temp).^2))); %模长1
        mod2 = sqrt(sum(sum((img_B - mean_B).^2))); %模长2        
        ncc = inp / (mod1*mod2);       
        
        mNCC(i,j) = mNCC(i,j) + ncc;                             
    end
end


%3.定位匹配位置
max_ncc = max(max(mNCC)); %最大ncc值
[x,y] = find(mNCC == max_ncc);
x = x(1); %定位到的第一个位置
y = y(1);

%4.保存结果图
getImg = img_A_raw(x:x+r2-1,y:y+c2-1,1:3);
imwrite(getImg,'.\output\NCC_match.bmp');

fprintf('\n Done. \n');

 




代码和数据打包:
https://download.csdn.net/download/Albert201605/87356041?spm=1001.2014.3001.5503


本文pdf下载:
https://download.csdn.net/download/Albert201605/87362510?spm=1001.2014.3001.5503


End.



参考:
https://www.freesion.com/article/7622115606/


转载:https://blog.csdn.net/Albert201605/article/details/128518872
查看评论
* 以上用户言论只代表其个人观点,不代表本网站的观点或立场