一、概述
在图像处理相关的问题中,图像对准是一类典型的问题,也就是要将两幅图严丝合缝地对应起来。通常来讲,两幅图大小不一,一个是模板,一个是母图,也就是要在母图中搜寻定位到与模板图最为接近的区域。
实现的方式有很多,惯常使用的是基于准则匹配的方法和基于特征匹配的方法。基于准则匹配,就是直接地对图的灰度值矩阵进行计算操作,以特定的准则遍历整个母图,找到与目标图(模板图)最相近的子区域;基于特征匹配,就是先提取出图像特征,再基于特征进行操作。这里对基于准则匹配的图像对准基本方法做简单介绍。
二、匹配准则
常见的匹配准则有SAD、MAD、SSD、MSD、NCC。前四种是基于两个矩阵的向量差做运算,NCC是计算两个矩阵的相关系数。事实上,矩阵是一个高阶向量(二阶张量),对两个矩阵向量作差,就得到差向量,对差向量做分析运算,便可在一定程度上获得两个矩阵间的差异性信息。
设 A = ( a i j ) A=\left( a_{ij} \right) A=(aij), B = ( b i j ) B=\left( b_{ij} \right) B=(bij), i = 1 , 2 , . . . , M i=1,2,...,M i=1,2,...,M, j = 1 , 2 , . . . , N j=1,2,...,N j=1,2,...,N.则差向量 D = A − B = ( a i j − b i j ) D=A−B=(aij−bij) D=A−B=(aij−bij)
(1) SAD
SAD,绝对误差算法(Sum of Absolute Differences),它是差向量D中各元素的绝对值之和,也就是L1范数,是两个向量间的曼哈顿距离。表达式为 S A D = ∑ i = 1 M ∑ j = 1 N ∣ a i j − b i j ∣ SAD=M∑i=1N∑j=1|aij−bij| SAD=i=1∑Mj=1∑N∣aij−bij∣
(2) MAD
MAD,平均绝对误差算法(Mean Absolute Differences),它是在SAD基础上进一步求平均值。表达式为 M A D = 1 M × N ∑ i = 1 M ∑ j = 1 N ∣ a i j − b i j ∣ MAD=1M×NM∑i=1N∑j=1|aij−bij| MAD=M×N1i=1∑Mj=1∑N∣aij−bij∣
(3) SSD
SSD,误差平方和算法(Sum of Squared Differences),它是差向量D中各元素的平方和。表达式为 S S D = ∑ i = 1 M ∑ j = 1 N ( a i j − b i j ) 2 SSD=M∑i=1N∑j=1(aij−bij)2 SSD=i=1∑Mj=1∑N(aij−bij)2
(4) MSD
MSD,平均误差平方和算法(Mean Square Differences),它是在SSD的基础上进一步求平均值。表达式为 M S D = 1 M × N ∑ i = 1 M ∑ j = 1 N ( a i j − b i j ) 2 MSD=1M×NM∑i=1N∑j=1(aij−bij)2 MSD=M×N1i=1∑Mj=1∑N(aij−bij)2
(5) NCC
NCC,归一化互相关算法(Normalized Cross Correlation)。若将两个矩阵看做两个随机变量,那么NCC就是两个变量之间的皮尔逊相关系数。同时,它也是两个矩阵向量在各自中心化之后彼此间空间夹角的余弦值。它的表达式为 N C C = ∑ i = 1 M ∑ j = 1 N ( a i j − E ( A ) ) ( b i j − E ( B ) ) ∑ i = 1 M ∑ j = 1 N ( a i j − E ( A ) ) 2 ⋅ ∑ i = 1 M ∑ j = 1 N ( b i j − E ( B ) ) 2 NCC=∑Mi=1∑Nj=1(aij−E(A))(bij−E(B))√∑Mi=1∑Nj=1(aij−E(A))2⋅√∑Mi=1∑Nj=1(bij−E(B))2 NCC=∑i=1M∑j=1N(aij−E(A))2⋅∑i=1M∑j=1N(bij−E(B))2∑i=1M∑j=1N(aij−E(A))(bij−E(B))
易知,ncc值的范围为 [ − 1 , 1 ] [−1,1] [−1,1],越接近1,两个矩阵越相关;越接近-1,两个矩阵越不相关。
等同于皮尔逊相关系数
皮尔逊相关系数,用以衡量两个变量间的线性相关性。它的表达式为 P e a r s o n = C o v ( X , Y ) D ( X ) ⋅ D ( Y ) = E ( X − E X ) ( Y − E Y ) D ( X ) ⋅ D ( Y ) Pearson=Cov(X,Y)√D(X)⋅√D(Y)=E(X−EX)(Y−EY)√D(X)⋅√D(Y) Pearson=D(X)⋅D(Y)Cov(X,Y)=D(X)⋅D(Y)E(X−EX)(Y−EY) 将两个矩阵看做两个随机变量代入,有 P e a r s o n = 1 M × N ∑ i = 1 M ∑ j = 1 N ( a i j − E ( A ) ) ( b i j − E ( B ) ) ∑ i = 1 M ∑ j = 1 N ( a i j − E ( A ) ) 2 M × N ⋅ ∑ i = 1 M ∑ j = 1 N ( b i j − E ( B ) ) 2 M × N = ∑ i = 1 M ∑ j = 1 N ( a i j − E ( A ) ) ( b i j − E ( B ) ) ∑ i = 1 M ∑ j = 1 N ( a i j − E ( A ) ) 2 ∑ i = 1 M ∑ j = 1 N ( b i j − E ( B ) ) 2 = N C C Pearson=1M×N∑Mi=1∑Nj=1(aij−E(A))(bij−E(B))√∑Mi=1∑Nj=1(aij−E(A))2M×N⋅√∑Mi=1∑Nj=1(bij−E(B))2M×N=∑Mi=1∑Nj=1(aij−E(A))(bij−E(B))√∑Mi=1∑Nj=1(aij−E(A))2√∑Mi=1∑Nj=1(bij−E(B))2=NCC Pearson=M×N∑i=1M∑j=1N(aij−E(A))2⋅M×N∑i=1M∑j=1N(bij−E(B))2M×N1∑i=1M∑j=1N(aij−E(A))(bij−E(B))=∑i=1M∑j=1N(aij−E(A))2∑i=1M∑j=1N(bij−E(B))2∑i=1M∑j=1N(aij−E(A))(bij−E(B))=NCC
等同于余弦距离
余弦距离即空间向量夹角的余弦值,通常用以衡量两个向量间的差异度。它的表达式为 c o s θ = < X , Y > ∣ X ∣ ⋅ ∣ Y ∣ cosθ=<X,Y>|X|⋅|Y| cosθ=∣X∣⋅∣Y∣<X,Y> 将两个矩阵向量去中心化后代入,有 c o s θ = < A − E ( A ) , B − E ( B ) > ∣ A − E ( A ) ∣ ⋅ ∣ B − E ( B ) ∣ = ∑ i = 1 M ∑ j = 1 N ( a i j − E ( A ) ) ( b i j − E ( B ) ) ∑ i = 1 M ∑ j = 1 N ( a i j − E ( A ) ) 2 ∑ i = 1 M ∑ j = 1 N ( b i j − E ( B ) ) 2 = N C C cosθ=<A−E(A),B−E(B)>|A−E(A)|⋅|B−E(B)|=∑Mi=1∑Nj=1(aij−E(A))(bij−E(B))√∑Mi=1∑Nj=1(aij−E(A))2√∑Mi=1∑Nj=1(bij−E(B))2=NCC cosθ=∣A−E(A)∣⋅∣B−E(B)∣<A−E(A),B−E(B)>=∑i=1M∑j=1N(aij−E(A))2∑i=1M∑j=1N(bij−E(B))2∑i=1M∑j=1N(aij−E(A))(bij−E(B))=NCC
三、matlab实现
(1) SAD
clear all;
close all; clc;
%1.读取图片
img_A_dir = '.\data\lena.bmp'; %待寻母图
img_A_raw = imread(img_A_dir);
[r1,c1,d1] = size(img_A_raw);
if d1==3 %灰度化
img_A = rgb2gray(img_A_raw);
else
img_A = img_A_raw;
end
img_B_dir = '.\data\refer.bmp'; %模板图
img_B_raw = imread(img_B_dir);
[r2,c2,d2] = size(img_B_raw);
if d2==3
img_B = rgb2gray(img_B_raw);
else
img_B = img_B_raw;
end
%2.计算SAD矩阵
msad = zeros(r1-r2,c1-c2);
for i = 1:r1-r2
for j = 1:c1-c2
temp = img_A(i:i+r2-1,j:j+c2-1);
msad(i,j) = msad(i,j) + sum(sum(abs(temp - img_B)));
end
end
%3.定位匹配位置
min_sad = min(min(msad));
[x,y] = find(msad == min_sad);
x = x(1); %定位到的第一个位置
y = y(1);
%4.保存结果图
getImg = img_A_raw(x:x+r2-1,y:y+c2-1,1:3);
imwrite(getImg,'.\output\SAD_match.bmp');
fprintf('\n Done. \n');
在这里插入代码片
(2) MAD
clear all;
close all; clc;
%1.读取图片
img_A_dir = '.\data\lena.bmp'; %待寻母图
img_A_raw = imread(img_A_dir);
[r1,c1,d1] = size(img_A_raw);
if d1==3 %灰度化
img_A = rgb2gray(img_A_raw);
else
img_A = img_A_raw;
end
img_B_dir = '.\data\refer.bmp'; %模板图
img_B_raw = imread(img_B_dir);
[r2,c2,d2] = size(img_B_raw);
if d2==3
img_B = rgb2gray(img_B_raw);
else
img_B = img_B_raw;
end
%2.计算MAD矩阵
mmad = zeros(r1-r2,c1-c2);
for i = 1:r1-r2
for j = 1:c1-c2
temp = img_A(i:i+r2-1,j:j+c2-1);
mmad(i,j) = mmad(i,j) + sum(sum(abs(temp - img_B)))/(r2*c2);
end
end
%3.定位匹配位置
min_mad = min(min(mmad));
[x,y] = find(mmad == min_mad);
x = x(1); %定位到的第一个位置
y = y(1);
%4.保存结果图
getImg = img_A_raw(x:x+r2-1,y:y+c2-1,1:3);
imwrite(getImg,'.\output\MAD_match.bmp');
fprintf('\n Done. \n');
(3) SSD
clear all;
close all; clc;
%1.读取图片
img_A_dir = '.\data\lena.bmp'; %待寻母图
img_A_raw = imread(img_A_dir);
[r1,c1,d1] = size(img_A_raw);
if d1==3 %灰度化
img_A = rgb2gray(img_A_raw);
else
img_A = img_A_raw;
end
img_B_dir = '.\data\refer.bmp'; %模板图
img_B_raw = imread(img_B_dir);
[r2,c2,d2] = size(img_B_raw);
if d2==3
img_B = rgb2gray(img_B_raw);
else
img_B = img_B_raw;
end
%2.计算SSD矩阵
mssd = zeros(r1-r2,c1-c2);
for i = 1:r1-r2
for j = 1:c1-c2
temp = img_A(i:i+r2-1,j:j+c2-1);
mssd(i,j) = mssd(i,j) + sum(sum((temp - img_B).^2));
end
end
%3.定位匹配位置
min_ssd = min(min(mssd));
[x,y] = find(mssd == min_ssd);
x = x(1); %定位到的第一个位置
y = y(1);
%4.保存结果图
getImg = img_A_raw(x:x+r2-1,y:y+c2-1,1:3);
imwrite(getImg,'.\output\SSD_match.bmp');
fprintf('\n Done. \n');
(4) MSD
clear all;
close all; clc;
%1.读取图片
img_A_dir = '.\data\lena.bmp'; %待寻母图
img_A_raw = imread(img_A_dir);
[r1,c1,d1] = size(img_A_raw);
if d1==3 %灰度化
img_A = rgb2gray(img_A_raw);
else
img_A = img_A_raw;
end
img_B_dir = '.\data\refer.bmp'; %模板图
img_B_raw = imread(img_B_dir);
[r2,c2,d2] = size(img_B_raw);
if d2==3
img_B = rgb2gray(img_B_raw);
else
img_B = img_B_raw;
end
%2.计算MSD矩阵
mmsd = zeros(r1-r2,c1-c2);
for i = 1:r1-r2
for j = 1:c1-c2
temp = img_A(i:i+r2-1,j:j+c2-1);
mmsd(i,j) = mmsd(i,j) + sum(sum((temp - img_B).^2))/(r2*c2);
end
end
%3.定位匹配位置
min_msd = min(min(mmsd));
[x,y] = find(mmsd == min_msd);
x = x(1); %定位到的第一个位置
y = y(1);
%4.保存结果图
getImg = img_A_raw(x:x+r2-1,y:y+c2-1,1:3);
imwrite(getImg,'.\output\MSD_match.bmp');
fprintf('\n Done. \n');
(5) NCC
clear all;
close all; clc;
%1.读取图片
img_A_dir = '.\data\lena.bmp'; %待寻母图
img_A_raw = imread(img_A_dir);
[r1,c1,d1] = size(img_A_raw);
if d1==3 %灰度化
img_A = rgb2gray(img_A_raw);
else
img_A = img_A_raw;
end
img_B_dir = '.\data\refer.bmp'; %模板图
img_B_raw = imread(img_B_dir);
[r2,c2,d2] = size(img_B_raw);
if d2==3
img_B = rgb2gray(img_B_raw);
else
img_B = img_B_raw;
end
%2.计算NCC矩阵
mNCC = zeros(r1-r2,c1-c2);
for i = 1:r1-r2
for j = 1:c1-c2
temp = img_A(i:i+r2-1,j:j+c2-1);
mean_temp = mean(temp(:)); %temp均值
mean_B = mean(img_B(:)); %img_B均值
inp = sum(sum((temp - mean_temp).*(img_B - mean_B))); %两向量内积
mod1 = sqrt(sum(sum((temp - mean_temp).^2))); %模长1
mod2 = sqrt(sum(sum((img_B - mean_B).^2))); %模长2
ncc = inp / (mod1*mod2);
mNCC(i,j) = mNCC(i,j) + ncc;
end
end
%3.定位匹配位置
max_ncc = max(max(mNCC)); %最大ncc值
[x,y] = find(mNCC == max_ncc);
x = x(1); %定位到的第一个位置
y = y(1);
%4.保存结果图
getImg = img_A_raw(x:x+r2-1,y:y+c2-1,1:3);
imwrite(getImg,'.\output\NCC_match.bmp');
fprintf('\n Done. \n');
代码和数据打包:
https://download.csdn.net/download/Albert201605/87356041?spm=1001.2014.3001.5503
本文pdf下载:
https://download.csdn.net/download/Albert201605/87362510?spm=1001.2014.3001.5503
End.
参考:
https://www.freesion.com/article/7622115606/
转载:https://blog.csdn.net/Albert201605/article/details/128518872