小言_互联网的博客

Python+Yolov5人脸口罩识别

466人阅读  评论(0)

 程序示例精选

Python+Yolov5人脸口罩识别

如需安装运行环境或远程调试,见文章底部微信名片,由专业技术人员远程协助!

前言

Yolov5比较Yolov4,Yolov3等其他识别框架,速度快,代码结构简单,识别效率高,对硬件要求比较低。这篇博客针对Python+Yolov5人脸口罩识别编写代码,代码整洁,规则,易读。 学习与应用推荐首选。


文章目录

        一、所需工具软件

        二、使用步骤

                1. 引入库

                2. 识别图像特征

                3. 识别参数定义

                4. 运行结果

         三在线协助


一、所需工具软件

          1. Python3.6以上

          2. Pycharm代码编辑器

          3. Torch, OpenCV库

二、使用步骤

1.引入库

代码如下(示例):


  
  1. import cv2
  2. import torch
  3. from numpy import random
  4. from models.experimental import attempt_load
  5. from utils.datasets import LoadStreams, LoadImages
  6. from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
  7. scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
  8. from utils.plots import plot_one_box
  9. from utils.torch_utils import select_device, load_classifier, time_synchronized

2.识别图像特征

代码如下(示例):


  
  1. def detect (save_img=False):
  2. source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
  3. webcam = source.isnumeric() or source.endswith( '.txt') or source.lower().startswith(
  4. ( 'rtsp://', 'rtmp://', 'http://'))
  5. # Directories
  6. save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
  7. (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
  8. # Initialize
  9. set_logging()
  10. device = select_device(opt.device)
  11. half = device.type != 'cpu' # half precision only supported on CUDA
  12. # Load model
  13. model = attempt_load(weights, map_location=device) # load FP32 model
  14. stride = int(model.stride.max()) # model stride
  15. imgsz = check_img_size(imgsz, s=stride) # check img_size
  16. if half:
  17. model.half() # to FP16
  18. # Second-stage classifier
  19. classify = False
  20. if classify:
  21. modelc = load_classifier(name= 'resnet101', n= 2) # initialize
  22. modelc.load_state_dict(torch.load( 'weights/resnet101.pt', map_location=device)[ 'model']).to(device).eval()
  23. # Set Dataloader
  24. vid_path, vid_writer = None, None
  25. if webcam:
  26. view_img = check_imshow()
  27. cudnn.benchmark = True # set True to speed up constant image size inference
  28. dataset = LoadStreams(source, img_size=imgsz, stride=stride)
  29. else:
  30. save_img = True
  31. dataset = LoadImages(source, img_size=imgsz, stride=stride)
  32. # Get names and colors
  33. names = model.module.names if hasattr(model, 'module') else model.names
  34. colors = [[random.randint( 0, 255) for _ in range( 3)] for _ in names]
  35. # Run inference
  36. if device.type != 'cpu':
  37. model(torch.zeros( 1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
  38. t0 = time.time()
  39. for path, img, im0s, vid_cap in dataset:
  40. img = torch.from_numpy(img).to(device)
  41. img = img.half() if half else img. float() # uint8 to fp16/ 32
  42. img /= 255.0 # 0 - 255 to 0.0 - 1.0
  43. if img.ndimension() == 3:
  44. img = img.unsqueeze( 0)
  45. # Inference
  46. t1 = time_synchronized()
  47. pred = model(img, augment=opt.augment)[ 0]
  48. # Apply NMS
  49. pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
  50. t2 = time_synchronized()
  51. # Apply Classifier
  52. if classify:
  53. pred = apply_classifier(pred, modelc, img, im0s)
  54. # Process detections
  55. for i, det in enumerate(pred): # detections per image
  56. if webcam: # batch_size >= 1
  57. p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
  58. else:
  59. p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame ', 0)
  60. p = Path(p) # to Path
  61. save_path = str(save_dir / p.name) # img.jpg
  62. txt_path = str(save_dir / 'labels' / p.stem) + ( '' if dataset.mode == 'image ' else f '_{frame} ') # img.txt
  63. s += '%gx%g ' % img.shape[2:] # print string
  64. gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
  65. if len(det):
  66. # Rescale boxes from img_size to im0 size
  67. det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
  68. # Write results
  69. for *xyxy, conf, cls in reversed(det):
  70. if save_txt: # Write to file
  71. xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
  72. line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
  73. with open(txt_path + '.txt ', 'a') as f:
  74. f.write(( '%g ' * len(line)).rstrip() % line + '\n')
  75. if save_img or view_img: # Add bbox to image
  76. label = f '{names[ int(cls)]} {conf: .2f}'
  77. plot_one_box(xyxy, im0, label=label, color=colors[ int(cls)], line_thickness= 3)
  78. # Print time (inference + NMS)
  79. print(f '{s}Done. ({t2 - t1: .3f}s) ')
  80. # Save results (image with detections)
  81. if save_img:
  82. if dataset.mode == 'image ':
  83. cv2.imwrite(save_path, im0)
  84. else: # 'video'
  85. if vid_path != save_path: # new video
  86. vid_path = save_path
  87. if isinstance(vid_writer, cv2.VideoWriter):
  88. vid_writer.release() # release previous video writer
  89. fourcc = 'mp4v' # output video codec
  90. fps = vid_cap.get(cv2.CAP_PROP_FPS)
  91. w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
  92. h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
  93. vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
  94. vid_writer.write(im0)
  95. if save_txt or save_img:
  96. s = f "\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
  97. print(f"Results saved to {save_dir}{s}")
  98. print(f'Done. ({time.time() - t0: .3f}s) ')
  99. print(opt)
  100. check_requirements()
  101. with torch.no_grad():
  102. if opt.update: # update all models (to fix SourceChangeWarning)
  103. for opt.weights in ['yolov5s.pt ', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
  104. detect()
  105. strip_optimizer(opt.weights)
  106. else:
  107. detect()

该处使用的url网络请求的数据。

3.识别参数定义:

代码如下(示例):


  
  1. if __name__ == '__main__':
  2. parser = argparse.ArgumentParser()
  3. parser.add_argument( '--weights', nargs= '+', type= str, default= 'yolov5_best_road_crack_recog.pt', help= 'model.pt path(s)')
  4. parser.add_argument( '--img-size', type= int, default= 640, help= 'inference size (pixels)')
  5. parser.add_argument( '--conf-thres', type= float, default= 0.25, help= 'object confidence threshold')
  6. parser.add_argument( '--iou-thres', type= float, default= 0.45, help= 'IOU threshold for NMS')
  7. parser.add_argument( '--view-img', action= 'store_true', help= 'display results')
  8. parser.add_argument( '--save-txt', action= 'store_true', help= 'save results to *.txt')
  9. parser.add_argument( '--classes', nargs= '+', type= int, default= '0', help= 'filter by class: --class 0, or --class 0 2 3')
  10. parser.add_argument( '--agnostic-nms', action= 'store_true', help= 'class-agnostic NMS')
  11. parser.add_argument( '--augment', action= 'store_true', help= 'augmented inference')
  12. parser.add_argument( '--update', action= 'store_true', help= 'update all models')
  13. parser.add_argument( '--project', default= 'runs/detect', help= 'save results to project/name')
  14. parser.add_argument( '--name', default= 'exp', help= 'save results to project/name')
  15. parser.add_argument( '--exist-ok', action= 'store_true', help= 'existing project/name ok, do not increment')
  16. opt = parser.parse_args()
  17. print(opt)
  18. check_requirements()
  19. with torch.no_grad():
  20. if opt.update: # update all models (to fix SourceChangeWarning)
  21. for opt.weights in [ 'yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt']:
  22. detect()
  23. strip_optimizer(opt.weights)
  24. else:
  25. detect()

4.运行结果如下: 

 

三、在线协助: 

如需安装运行环境或远程调试,见文章底部微信名片,由专业技术人员远程协助!


转载:https://blog.csdn.net/alicema1111/article/details/128324661
查看评论
* 以上用户言论只代表其个人观点,不代表本网站的观点或立场