小言_互联网的博客

m基于matlab的光通信误码率仿真,分别对比了OFDM+BPSK和OFDM+4QAM的误码率和星座图

368人阅读  评论(0)

目录

1.算法描述

2.matlab算法仿真效果

3.MATLAB核心程序

4.完整MATLAB


1.算法描述

     光通信系统中,QAM调制应用广泛,因为其利用幅度和相位同时传递i信息,提高了频带利用率。目前,最高阶数的QAM已达到1024-QAM即星座图有1024个点。虽然QAM应用广泛,但是由于其产生的信号是复数信号,无法直接应用在基于强度调制/直接检测(IM/DD)系统中,所以一种改进的QAM调制格式对于可见光通信领域就显得尤其重要。
       正交幅度调制(QAM)是一种将两种调幅信号聚合在一起的调制方法。正交调幅信号由两个频率相同,相位相差90°的载波,分别称为I支路信号(同相支路)和Q支路信号(正交支路),两种被调制的载波在发送端被混合,在整体上显示为对载波的幅度和相位同时进行调制。

       OFDM技术的总体流程可以表示成图1。图1中,有码元a1到ak,共k个子信道,每个子信道对应一个子载波,这些子载波与ak相结合调制(基带调制),调制结束后再进行射频调制,图中省略用天线图案表示。此后,空中叠加发送,接收端分别接收后进行解调。

    光通信就是以光波为载波的通信。增加光路带宽的方法有两种:一是提高光纤的单信道传输速率;二是增加单光纤中传输的波长数,即波分复用技术(WDM)。

ASON

       无论从国内研发进展、试商用情况,还是从国外的发展经验来看,国内运营商在传送网中大规模引入ASON技术将是必然的趋势。ASON(AutomaticallySwitchedOpticalNetwork,智能光网络)是一种光传送网技术。目前的产品和市场状况表明,ASON技术已经达到可商用的成熟程度,随着3G、NGN的大规模部署,业务需求将进一步带动传送网技术的发展,预计2007年ASON将得到更加广泛的商用。

FTTH

       FTTH(FiberToTheHome,光纤到户)是下一代宽带接入的最终目标。目前,实现FTTH的技术中,EPON将成为未来我国的主流技术,而GPON最具发展潜力。EPON采用Ethernet封装方式,所以非常适于承载IP业务,符合IP网络迅猛发展的趋势。目前,国家已经将EPON作为“863”计划重大项目,并在商业化运作中取得了主动权。

       GPON比EPON更注重对多业务的支持能力,因此更适合未来融合网络和融合业务的发展。但是它目前还不够成熟并且价格偏高,还无法在我国大规模推广。

        我国的FTTH还处于市场启动阶段,离大规模的商业部署还有一段距离。在未来的产业化发展中,运营商对本地网“最后一公里”的垄断是制约FTTH发展的重要因素,采取“用户驻地网运营商与房地产开发商合作实施”的形式,更有利于FTTH产业的健康发展。从日本、美国、欧洲和韩国等国家的FTTH发展经验来看,FTTH的核心推动力在于网络所提供的丰富内容,而政府对应用和内容的监控和管理政策也会制约FTTH的发展。

WDM

        WDM突破了传统SDH网络容量的极限,将成为未来光网络的核心传输技术。按照通道间隔的不同,WDM(WavelengthDivisionMultiplexing,波分复用)可以分为DWDM(密集波分复用)和CWDM(稀疏波分复用)这两种技术。DWDM是当今光纤传输领域的首选技术,但CWDM也有其用武之地。相对于DWDM,CWDM具有成本低、功耗低、尺寸小、对光纤要求低等优点。未来几年,电信运营商将会严格控制网络建设成本,这时CWDM技术就有了自己的生存空间,它适合快速、低成本多业务网络建设,如应用于城域和本地接入网、中小城市的城域核心网等。

RPR

       弹性分组环(ResilientPacketRing,RPR)将成为未来重要的光城域网技术。近年来许多国内外传输设备厂商都开发了内嵌RPR功能的MSTP设备,RPR技术得到了大量芯片制造商、设备制造商和运营商的支持和参与。

2.matlab算法仿真效果

matlab2017b仿真结果如下:

 

 

 

3.MATLAB核心程序


  
  1. %参数初始化
  2. %the OFDM symbols,OFDM长度
  3. Nsc = 256;
  4. %frame length
  5. Lf = 10;
  6. %发送数据
  7. tx_data = func_seq('PRBS_15','PRBS', 2e5);
  8. %MQAM
  9. M = 4;
  10. %QAM调制
  11. [mods,demods] = func_MQAM(Nsc,'M',M,'SymbolOrder','Gray');
  12. %高斯白噪声
  13. SNR = [ 1: 1: 8];
  14. Ng = 0.1;
  15. %training sequence
  16. TS_level = [ 1, 1];
  17. %samples per symbol
  18. Nfft = 8*Nsc;
  19. %cyclic prefix length
  20. Np = round(Ng*Nfft);
  21. %发送前调制
  22. y_Tx_mod = func_OFDM_modulator(tx_data,mods,Np,Lf,TS_level,Nfft);
  23. %开始循环
  24. for i = 1:length(SNR)
  25. i
  26. SNRs = SNR(i);
  27. %可见光信道
  28. y_Tx_bef = y_Tx_mod;
  29. Fs = 40e9; %采样频率
  30. Ts = 1/Fs; %采样周期
  31. F_AWG = 10e9; %频率偏移
  32. F_RF = 0;
  33. AWG = upsample(y_Tx_bef,Fs/F_AWG);
  34. n = ( 1:length(AWG))';
  35. S_RF = AWG.*exp( 1j* 2*pi*F_RF*n*Ts); %
  36. %LED信道
  37. SNRdb = func_LED_channel();
  38. %降采样
  39. y_Rx = func_decimate2(S_RF,Fs/F_AWG);
  40. %最后加入白噪声
  41. y_Rx2 = awgn(y_Rx,SNRs+SNRdb,'measured');
  42. %OFDM解调
  43. [rx_data,Y] = func_OFDM_demodulator(y_Rx2,demods,Np,Lf,TS_level,Nfft);
  44. [Nerr,BER] = func_error(rx_data, 15, 0);
  45. Bers(i) = BER;
  46. end
  47. 01_095_m

4.完整MATLAB

V


转载:https://blog.csdn.net/hlayumi1234567/article/details/128139720
查看评论
* 以上用户言论只代表其个人观点,不代表本网站的观点或立场