解决问题
将样本划分为由类似的对象组成的多个类的过程(聚类)。
聚类后,可以更加准确的在每个类中单独使用统计模型进行估计、分析或预测;也可以探究不同类之间的相关性和主要差异。
(KMeans本质上是一种基于欧式距离度量的数据划分方法)
ps. 分类是已知类别的,聚类未知。
算法流程
K-means聚类算法:
- 指定需要划分的簇的个数K值(类的个数);
- 随机地选择K个数据对象作为初始的聚类中心(不一定要是我们的样本点);
- 计算其余的各个数据对象到这K个初始聚类中心
的距离,把数据对象划归到距离它最近的那个中心所
处在的簇类中; - 调整新类并且重新计算出新类的中心;
- 循环步骤三和四,看中心是否收敛(不变),如
果收敛或达到迭代次数则停止循环; - 结束
公式过程: k-means聚类算法
模型特性
K-means聚类优点:
(1)算法简单、快速。
(2)对处理大数据集,该算法是相对高效率的。
当簇是密集的、球状或团状的,且簇与簇之间区别明显时,聚类效果较好 。
K-means聚类缺点:
(1)要求用户必须事先给出要生成的簇的数目K。
(2)对初值敏感。
(3)对于孤立点数据敏感。
ps. K‐means++算法可解决2和3这两个缺点。
K-means++算法选择初始聚类中心的基本原则是:
初始的聚类中心之间的相互距离要尽可能的远。(只对K-means算法“初始化K个聚类中心” 这一步进行了优化)
即进行预处理优化:
步骤一:随机选取一个样本作为第一个聚类中心;
步骤二:计算每个样本与当前已有聚类中心的最短距离(即与最近一个聚类中心的距离),这个值越大,表示被选取作为聚类中心的概率较大;
最后,用轮盘法(依据概率大小来进行抽选)选出下一个聚类中心;
步骤三:重复步骤二,直到选出K个聚类中心。选出初始点后,就继续使用标准的K-means算法了。
使用方法
-
利用Spss软件
默认使用的是K-means++算法 -
利用matlab软件
X2 = zscore(X); % zscore方法标准化数据
Y2 = pdist(X2); % 计算距离(默认欧式距离)
Z2 = linkage(Y2); % 定义变量之间的连接,用指定的算法计算系统聚类树
T = cluster(Z2,6); % 创建聚类
H = dendrogram(Z2); % 作出系谱图(散点聚类图看腻了,这里画个系谱图)
结合 MATLAB 中的一些函数,结果作出系谱图
ps. MATLAB 以及 sklearn 也提供了相应的 kmeans() 函数可供直接聚类使用
from 5 分钟带你弄懂 K-means 聚类
注意事项
a. 聚类个数(K值)
分几类主要取决于个人的经验与感觉,通常的做法是多尝试几个K值,看分成几类的结果更好解释,更符合分析目的等。(即提前应该要知道分类数目)
ps. 如果不能提前判断要分几类,可以采用系统(层次)聚类算法。
b. 数据量纲
如果数据的量纲不一样,那么算距离时就没有意义。例如:如果X1单位是米,X2单位是吨,用距离公式计算就会出现“米的平方”加上“吨的平方”再开平方,最后算出的东西没有数学意义,这就有问题了。
所以应该先进行数据的预处理(标准化处理)
可以直接利用spss实现:
c. 分类与聚类区别
分类:类别是已知的,通过对已知类别的数据进行训练和学习,找到这些不同类的特征,再对未知类别的数据进行分类。属于监督学习。
聚类:事先不知道数据会分为几类,通过聚类分析将数据聚合成几个群体。聚类不需要对数据进行训练和学习。属于无监督学习。
一般而言,是否有监督,就看输入数据是否有标签,输入数据有标签,则为有监督学习,否则为无监督学习。
d. 适用条件
KMeans方法只有在簇的平均值被定义的情况下才能使用,且对有些分类属性的数据不适合。
异常值会对均值计算产生较大影响,导致中心偏移,因此对于"噪声"和孤立点数据最好能提前过滤 。
e. 对于K值的选择
from K-Means算法之K值的选择
f. 簇的形式
from K-means聚类算法
g. 与其他聚类算法的比较
参考资料
转载:https://blog.csdn.net/weixin_51942493/article/details/125857141