背景阐述:
利用神经网络完成对手写数字进行识别的实例。
在手写数字的识别中,我们不关心图形的颜色,所以需要的是灰度图。
手写数字的识别基础可见这篇博文,PASS:写得挺有意思
基于pytorch函数实现
构建网络层可以基于Module类或函数(nn.functional)。
nn中的大多数层在functional中都有与之对应的函数。
神经网络结构
使用两个隐含层,每层激活函数为ReLU,最后使用torch.max(out, 1)找出张量out最大值对应索引作为预测值。
代码
导入模块
import os
import numpy as np
import matplotlib.pyplot as plt
import torch
# 导入 pytorch 内置的 mnist 数据
from torchvision.datasets import mnist
# 导入预处理模块
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
# 导入nn及优化器
import torch.nn.functional as F
import torch.optim as optim
from torch import nn
定义超参数
train_batch_size = 64
test_batch_size = 128
learning_rate = 0.01
num_epoches = 20
lr = 0.01
momentum = 0.5
# 定义预处理函数,这些预处理依次放在Compose函数中。
transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize([0.5], [0.5])])
# 判断是否需要从网络下载数据集
is_downloda = True
if os.path.exists('./data/MNIST'):
is_downloda = False
# 下载数据,并对数据进行预处理
train_dataset = mnist.MNIST(
'./data', train=True, transform=transform, download=is_downloda)
test_dataset = mnist.MNIST('./data', train=False, transform=transform)
# dataloader是一个可迭代对象,可以使用迭代器一样使用。
train_loader = DataLoader(
train_dataset, batch_size=train_batch_size, shuffle=True)
test_loader = DataLoader(
test_dataset, batch_size=test_batch_size, shuffle=False)
Normalize([0.5], [0.5])对张量进行归一化,这里两个0.5分别表示对张量进行归一化的全局平均值和方差。因图像是灰色的只有一个通道,如果有多个通道,需要有多个数字,如3个通道,应该是Normalize([m1, m2, m3], [n1, n2, n3]);
可视化数据
examples = enumerate(test_loader)
# enumerate() 函数用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标。
batch_idx, (example_data, example_targets) = next(examples)
# next() 返回迭代器的下一个项目。
fig = plt.figure()
for i in range(6):
plt.subplot(2, 3, i+1)
plt.tight_layout()
plt.imshow(example_data[i][0], cmap='gray', interpolation='none')
plt.title("Ground Truth: {}".format(example_targets[i]))
# 关闭x,y轴显示
plt.xticks([])
plt.yticks([])
构建网络
class Net(nn.Module):
"""
使用sequential构建网络,Sequential()函数的功能是将网络的层组合到一起
"""
def __init__(self, in_dim, n_hidden_1, n_hidden_2, out_dim):
super(Net, self).__init__()
self.layer1 = nn.Sequential(
nn.Linear(in_dim, n_hidden_1), nn.BatchNorm1d(n_hidden_1))
self.layer2 = nn.Sequential(
nn.Linear(n_hidden_1, n_hidden_2), nn.BatchNorm1d(n_hidden_2))
self.layer3 = nn.Sequential(nn.Linear(n_hidden_2, out_dim))
def forward(self, x):
x = F.relu(self.layer1(x))
x = F.relu(self.layer2(x))
x = self.layer3(x)
return x
实例化
调用前面构建的函数,输入为28*28,300个、100个隐藏层,10个输出
# 检测是否有可用的GPU,有则使用,否则使用CPU
print("GPU是否可用", torch.cuda.is_available())
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# 实例化网络
model = Net(28 * 28, 300, 100, 10)
# 输出10维(10个数字)
model.to(device)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum)
训练模型
# 开始训练
losses = []
acces = []
eval_losses = []
eval_acces = []
for epoch in range(num_epoches):
train_loss = 0
train_acc = 0
model.train()
# 动态修改参数学习率,随着次数加大,学习率/10
if epoch % 5 == 0:
optimizer.param_groups[0]['lr'] *= 0.1
for img, label in train_loader:
img = img.to(device)
label = label.to(device)
img = img.view(img.size(0), -1) # 展成1维
# 前向传播
out = model(img) # 传入参数,自动执行forward函数
loss = criterion(out, label)
optimizer.zero_grad() # 梯度清零
# 反向传播
# 缺省情况下,梯度是累加的,在梯度反向传播之前,需要梯度清零
loss.backward()
optimizer.step() # 基于当前梯度,更新参数
# 记录误差
train_loss += loss.item()
# 计算分类的准确率
_, pred = out.max(1) # 找出张量out最大值对应索引作为预测值
num_correct = (pred == label).sum().item()
acc = num_correct / img.shape[0]
train_acc += acc
losses.append(train_loss / len(train_loader))
acces.append(train_acc / len(train_loader))
# 在测试集上检验效果
eval_loss = 0
eval_acc = 0
# 将模型改为预测模式
model.eval()
for img, label in test_loader:
img = img.to(device)
label = label.to(device)
img = img.view(img.size(0), -1)
# 前向传播
out = model(img)
loss = criterion(out, label)
# 记录误差
eval_loss += loss.item()
# 记录准确率
_, pred = out.max(1)
num_correct = (pred == label).sum().item()
acc = num_correct / img.shape[0]
eval_acc += acc
eval_losses.append(eval_loss / len(test_loader))
eval_acces.append(eval_acc / len(test_loader))
print('epoch: {}, Train Loss: {:.4f}, Train Acc: {:.4f}, Test Loss: {:.4f}, Test Acc: {:.4f}'
.format(epoch, train_loss / len(train_loader), train_acc / len(train_loader),
eval_loss / len(test_loader), eval_acc / len(test_loader)))
将训练过程可视化
plt.title('train loss')
plt.subplot(1,2,1)
plt.plot(np.arange(len(losses)), losses)
plt.legend(['Train Loss'], loc='upper right')
plt.subplot(1,2,2)
plt.title('train acces')
plt.plot(np.arange(len(acces)),acces,color='red', label='acces')
plt.legend(['Train acces'], loc='upper right')
plt.savefig(fname="./test_score.png", dpi=100)
References
【1】Pytorch官网
【2】Pytorch实现神经网络案例
转载:https://blog.csdn.net/weixin_45492560/article/details/125350850
查看评论