坊间一直流传着一个传说~STM32的硬件I2C设计有BUG,最好不要用,用软件I2C比较靠谱。长久以来,为了不必要的麻烦,我也一直没有用过硬件I2C,主要是软件I2C也比较方便,基本上任意端口都可以用。
最近画了块板子,正好用到了I2C,就顺便来测试一下硬件I2C是不是真的像有些人说的不好用。
测试硬件:STM32F407VET6+AT24C64
测试软件:STM32CubeMX v6.1.1
HAL库:STM32CubeF4 Firmware Package V1.25.2
STM32CubeMX配置
使用STM32CubeMX配置很方便,时钟等基础配置不再详细介绍,直接看I2C配置如下:
这里的速度模式选择为标准模式,时钟为100K。要求高的可以选择Fast模式,400K时钟。
配置完成后生成代码。
编写代码
代码生成后,直接调用读写数据的函数即可:
HAL_I2C_Mem_Read
HAL_I2C_Mem_Write
函数参数可参考代码注释。
24CXX系列的EEPROM进行写操作时需要注意,跨页写入时,要有一定的延时,否则会写入不成功。不同容量的页大小也不一样。
另外,24C16以下容量的地址为8位,24C32以上容量的地址为16位,在调用读写函数时需要注意,选择I2C_MEMADD_SIZE_8BIT或者I2C_MEMADD_SIZE_16BIT。测试使用的是24C64,所以选择I2C_MEMADD_SIZE_16BIT。
为了方便操作,将读写函数再封装一层,将跨页写入的各种情况都考虑到,实现任意地址连续写入。程序如下:
-
#include "at24c64.h"
-
#include "i2c.h"
-
-
-
#define AT24CXX_ADDR_READ 0xA1
-
#define AT24CXX_ADDR_WRITE 0xA0
-
#define PAGE_SIZE 32
-
/**
-
* @brief AT24C64任意地址连续读多个字节数据
-
* @param addr —— 读数据的地址(0-65535)
-
* @param dat —— 存放读出数据的地址
-
* @retval 成功 —— HAL_OK
-
*/
-
uint8_t At24cxx_Read_Amount_Byte(uint16_t addr, uint8_t* recv_buf, uint16_t size)
-
{
-
return HAL_I2C_Mem_Read(&hi2c2, AT24CXX_ADDR_READ, addr, I2C_MEMADD_SIZE_16BIT, recv_buf, size,
0xFFFFFFFF);
-
}
-
-
-
/**
-
* @brief AT24C64任意地址连续写多个字节数据
-
* @param addr —— 写数据的地址(0-65535)
-
* @param dat —— 存放写入数据的地址
-
* @retval 成功 —— HAL_OK
-
*/
-
uint8_t At24cxx_Write_Amount_Byte(uint16_t addr, uint8_t* dat, uint16_t size)
-
{
-
uint8_t i =
0;
-
uint16_t cnt =
0;
//写入字节计数
-
-
/* 对于起始地址,有两种情况,分别判断 */
-
if(
0 == addr % PAGE_SIZE )
-
{
-
/* 起始地址刚好是页开始地址 */
-
-
/* 对于写入的字节数,有两种情况,分别判断 */
-
if(size <= PAGE_SIZE)
-
{
-
//写入的字节数不大于一页,直接写入
-
return HAL_I2C_Mem_Write(&hi2c2, AT24CXX_ADDR_WRITE, addr, I2C_MEMADD_SIZE_16BIT, dat, size,
0xFFFFFFFF);
-
}
-
else
-
{
-
//写入的字节数大于一页,先将整页循环写入
-
for(i =
0;i < size/PAGE_SIZE; i++)
-
{
-
HAL_I2C_Mem_Write(&hi2c2, AT24CXX_ADDR_WRITE, addr, I2C_MEMADD_SIZE_16BIT, &dat[cnt], PAGE_SIZE,
0xFFFFFFFF);
-
HAL_Delay(
3);
-
addr += PAGE_SIZE;
-
cnt += PAGE_SIZE;
-
}
-
//将剩余的字节写入
-
return HAL_I2C_Mem_Write(&hi2c2, AT24CXX_ADDR_WRITE, addr, I2C_MEMADD_SIZE_16BIT, &dat[cnt], size - cnt,
0xFFFFFFFF);
-
}
-
}
-
else
-
{
-
/* 起始地址偏离页开始地址 */
-
/* 对于写入的字节数,有两种情况,分别判断 */
-
if(size <= (PAGE_SIZE - addr%PAGE_SIZE))
-
{
-
/* 在该页可以写完 */
-
return HAL_I2C_Mem_Write(&hi2c2, AT24CXX_ADDR_WRITE, addr, I2C_MEMADD_SIZE_16BIT, dat, size,
0xFFFFFFFF);
-
}
-
else
-
{
-
/* 该页写不完 */
-
//先将该页写完
-
cnt += PAGE_SIZE - addr%PAGE_SIZE;
-
HAL_I2C_Mem_Write(&hi2c2, AT24CXX_ADDR_WRITE, addr, I2C_MEMADD_SIZE_16BIT, dat, cnt,
0xFFFFFFFF);
-
addr += cnt;
-
HAL_Delay(
3);
-
//循环写整页数据
-
for(i =
0;i < (size - cnt)/PAGE_SIZE; i++)
-
{
-
HAL_I2C_Mem_Write(&hi2c2, AT24CXX_ADDR_WRITE, addr, I2C_MEMADD_SIZE_16BIT, &dat[cnt], PAGE_SIZE,
0xFFFFFFFF);
-
HAL_Delay(
3);
-
addr += PAGE_SIZE;
-
cnt += PAGE_SIZE;
-
}
-
-
//将剩下的字节写入
-
return HAL_I2C_Mem_Write(&hi2c2, AT24CXX_ADDR_WRITE, addr, I2C_MEMADD_SIZE_16BIT, &dat[cnt], size - cnt,
0xFFFFFFFF);
-
}
-
}
-
}
测试结果
经过测试硬件I2C读写EEPROM正常。没有发现所谓的BUG,当然这只是M4内核的针对EEPROM一种器件的测试,对于其它内核(M3等)和其它I2C器件,还有待验证。
总结
硬件I2C使用起来比较简单,不需要自己去调节时序,但是只能使用固定的几个引脚。
软件模拟I2C可以使用任意引脚,针对不同的MCU,移植起来比较方便,但对于不同频率的MCU,时序调节比较麻烦。
两者各有其优缺点,需要根据实际需求去选择。
推荐阅读:
欢迎关注公众号"嵌入式技术开发",大家可以后台给我留言沟通交流。如果觉得该公众号对你有所帮助,也欢迎推荐分享给其他人。
转载:https://blog.csdn.net/zhang062061/article/details/116409824