项目说明
网易云音乐歌单数据获取,获取某一歌曲风格的所有歌单,进入每个歌单获取歌单名称、创建者、播放量、页面链接、收藏数、转发数、评论数、标签、介绍、收录歌曲数、部分收录歌名,并统计播放量前十的歌单,将播放量前十的歌单以及对应的所有信息进行另外存储,对其进行可视化展示。
在做这个爬虫的时候,对于如何翻页问题和身边的人进行了探讨,有人说用selenium模拟点击,但是通过观察网页,我发现即使是不用模拟点击翻页也能历遍爬完歌单的信息,接下来我就带着大家一起如何爬取数据。
代码框架
第三方库说明
在项目中用到的一些第三方库的介绍:
# bs4
'''
BS4全称是Beautiful Soup,它提供一些简单的、
python式的函数用来处理导航、搜索、修改分析树等功能。
它是一个工具箱,通过解析文档为Beautiful Soup自动将输入文档转换为
Unicode编码,输出文档转换为utf-8编码。
'''
# requests
'''
用requests库来访问网页,获取网页内容,支持HTTP特性
'''
# time
'''
Time库是与时间处理有关的模块,
在这个项目中是用来强制网页访问间隔时间的。
'''
# random
'''
Random库主要功能是提供随机数,在项目中和time库配合使用,
生产随机强制访问的间隔时间的
'''
# xlwt
'''
Python访问Excel时的库,其功能是写入xls文件,
在本项目中是用于写入爬取的数据
'''
# pandas
'''
Pandas库是基于NumPy的一种工具,用于读取文本文件的,
可以快速便捷的处理数据的库。
'''
# pyecharts.charts
'''
pyecharts.charts是用于数据可视化的库,其中包含很多种画图工具,
在本项目中应用到的是画柱状图是Bar,圆饼图是Pie
'''
# matplotlib.pyplot
'''
matplotlib也是可视化的库,由各种可视化的类构成,
matplotlib.pyplot是绘制各类可视化图形的命令子库
'''
内容爬取说明
爬取链接:https://music.163.com/discover/playlist/?cat=
页面详情
观察网页内容是我们进行爬虫项目的首要步骤,这里我选择了华语类型的歌单来观察一下;
华语风格的歌单总共有37页,每页有35个歌单,那总共大约有1295个歌单。一个风格的歌单是代表不了全部的,我们在做爬虫的时候要避免以偏概全,多看一个页面,找出规律,这样才能写出结构化的爬虫,当网页的内容发生变化,但总体框架没有变化时,我们的代码就能继续运行,这也是考验代码健壮性的一方面(跑偏了)。
在选择其他歌单类别后,可以看到每个类别的歌单基本都是用37或38个页面来存放歌单,每个页面有35个歌单,那如何历遍每一个页面呢?
我当时面对这个问题的时候也是想了很久,又不想用selenium模拟点击,那我们就要多观察源代码,看看有没有蛛丝马迹。
老规矩 F12 进入开发者选项:
在源代码中,我们可以看到每个页面对应的链接是有规律的,
例如:“https://music.163.com/#/discover/playlist/?order=hot&cat=%E5%8D%8E%E8%AF%AD&limit=35&offset=35”
通过网页链接观察,我发现对于网页翻页的重点在于“&limit=35&offset=35”的数字35,每个页面是以链接后面的数字决定当前是在第几个页面,是以0为首页面,35为倍数的规律,第一个页面为 “&limit=0&offset=0”, 第二个页面为 “&limit=35&offset=35”,第三个页面为 “&limit=35&offset=70”,以此类推,只要知道当前类别的歌单有多少个页面,就可以通过for循环来循环翻页,遍历每一个页面。
既然我们已经知道了翻页的规律了,那现在的重点就是获取歌单的页数。我们可以在箭头指引的地方,用开发者选项自带的复制方式,直接右键选择copy,copy selector直接复制CSS选择器语句;
标签: #m-pl-pager > div > a:nth-child(11)
#获取歌单网页的页数
result = bs.select('#m-pl-pager > div > a:nth-child(11)')
那接下来就是对单个歌单进行内容爬取了,由于我们爬取的内容较多,所以这里就不一一列举了,大家可以自行对比参照,不懂可以私信。
获取歌单名称
进入每一个页面,获取该页面的每一个歌单,进入单个歌单中,歌单名称,创建者,播放量等数据都存放在网页的同一个div内,
id='content-operation'
通过selector选择器选择各个内容的,由于是在网易云的网页版,因此在歌单内的歌曲并没有显示所有歌曲,只显示了10条歌曲,因此在爬取的时候每个歌单只获取了10条歌曲。如果还想要爬取每天歌曲更多详细内容,可以进入歌曲的url链接,获取更多的内容。
完整代码
这里我会定义一个内容类Content 和 网页信息类Website,进行结构化爬虫,如果不是很理解的话,可以看看我之前发过的内容,
Content类和 Website类
class Content:
def __init__(self, url, name, creator, play, collect, transmit, comment, tag,
introduce, sing_num, sing_name):
self.url = url
self.name = name
self.creator = creator
self.play = play
self.collect = collect
self.transmit = transmit
self.comment = comment
self.tag = tag
self.introduce = introduce
self.sing_num = sing_num
self.sing_name = sing_name
def print(self):
print("URL: {}".format(self.url))
print("NAME:{}".format(self.name))
print("CRAETOR:{}".format(self.creator))
print("PLAY:{}".format(self.play))
print("COLLECT:{}".format(self.collect))
print("TRANSMIT:{}".format(self.transmit))
print("COMMENT:{}".format(self.comment))
print("TAG:{}".format(self.tag))
print("INTRODUCE:{}".format(self.introduce))
print("SING_NUM:{}".format(self.sing_num))
print("SING_NAME:{}".format(self.sing_name))
class Website:
def __init__(self, searchUrl, resultUrl, pUrl, absoluterUrl, nameT, creatorT, playT, collectT, transmitT,
commentT, tagT, introduceT, sing_numT, sing_nameT):
self.resultUrl = resultUrl
self.searchUrl = searchUrl
self.absoluterUrl = absoluterUrl
self.pUrl = pUrl
self.nameT = nameT
self.creatorT = creatorT
self.playT = playT
self.collectT = collectT
self.transmitT = transmitT
self.commentT = commentT
self.tagT = tagT
self.introduceT = introduceT
self.sing_numT = sing_numT
self.sing_nameT = sing_nameT
爬取类 Crawler
from bs4 import BeautifulSoup
import re
import requests
import time
import random
import xlwt #进行excel操作
class Crawler:
#爬取网页函数
def getWeb(self, url):
try: #异常处理
#请求头
headers_ = {
'User-Agent':'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36',
'Accept':'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8'}
req = requests.get(url, headers = headers_)
req.encoding = "utf-8" #网页格式化,避免出现乱码
except requests.exceptions.RequestException:
return None
return BeautifulSoup(req.text, "html.parser")
#爬取所需内容的函数
def getContent(self, pageObj, selector):
childObj = pageObj.select(selector)
# print("\n".join(line.text for line in childObj))
return "\n".join(line.text for line in childObj)
#搜索函数,主函数
def search(self, topic, site):
# 爬取某种风格的歌单有多少页
newurl = site.searchUrl + topic
newurl = requests.utils.quote(newurl, safe=':/?=&') #对url链接上存在的中文字符进行处理
bs = self.getWeb(newurl)
result = bs.select('#m-pl-pager > div > a:nth-child(11)')
num = int("\n".join(link.text for link in result)) #某种风格歌单的页数
# 翻页,选取一种歌曲风格,有多个页面加载歌单,分别读取
for i in range(0, num+1):
j = 35*i
url = site.searchUrl + topic + '&limit=35&offset=' + str(j) #构造每个页面的url链接
url = requests.utils.quote(url, safe=':/?=&')
bs = self.getWeb(url)
searchResults = bs.select(site.resultUrl)
for link in searchResults:
url = link.attrs["href"]
# 判断是否为绝对链接
if(site.absoluterUrl):
bs = self.getWeb(url)
else:
bs = self.getWeb(site.pUrl + url)
# print(site.pUrl + url)
if(bs is None):
print("something was wrong with that page or URL. Skipping")
return
else:
#爬取歌曲名称
main = bs.find('ul',{
'class':'f-hide'})
sing_name = "\n".join(music.text for music in main.find_all('a'))
# 爬取相关内容
data = [] #申请一个数组,以歌单为单位,存储每个歌单里面所需要的内容
url = site.pUrl + url
data.append(url)
# print(data)
# 加入一个参数,判断目前读取的数据是字符串还是整数
name = self.getContent(bs, site.nameT)
data.append(name)
creator = self.getContent(bs, site.creatorT)
data.append(creator)
play = self.getContent(bs, site.playT)
data.append(play)
collect = self.getContent(bs, site.collectT)
data.append(collect)
transmit = self.getContent(bs, site.transmitT)
data.append(transmit)
comment = self.getContent(bs, site.commentT)
data.append(comment)
tag = self.getContent(bs, site.tagT)
data.append(tag)
introduce = self.getContent(bs, site.introduceT)
data.append(introduce)
sing_num = self.getContent(bs, site.sing_numT)
data.append(sing_num)
# sing_name = self.getContent(bs, site.sing_nameT)
data.append(sing_name)
datalist.append(data) #以歌单为单位存入数组中
# print(datalist)
content = Content(url, name, creator, play, collect, transmit, comment, tag, introduce, sing_num, sing_name)
# content.print()
# return datalist
#数据写入文档
def saveData(self, datalist, savepath):
print("保存到Excel文件中!")
# xlwt.Workbook用来创建一个工作表,style_compression=0表示是否被压缩
music = xlwt.Workbook(encoding = 'utf-8', style_compression=0)
# 添加sheet表格,并允许重复修改
sheet = music.add_sheet('网易云音乐数据爬取', cell_overwrite_ok=True)
# 定义列名
col = ("url", "歌单名称", "创建者", "播放量", "收藏量", "转发量",
"评论量", "标签", "介绍", "歌曲数量", "歌曲名称" )
for i in range(0,11):
sheet.write(0, i, col[i]) #将列名写进表格
for i in range(0, len(datalist)-1):
# print("第{}行正在写入".format(i+1))
data = datalist[i]
for j in range(0, 11):
sheet.write(i+1, j, data[j])
music.save('E:/新建文件夹/Python爬虫/网易云音乐.xls')
print("数据保存成功!")
crawler = Crawler()
# searchUrl, resultUrl, pUrl, absoluterUrl, nameT, creatorT, playT, collectT, transmitT,
# commentT, tagT, introduceT, sing_numT, sing_nameT
#对应website类的参数,将website定义的参数进行实例化
siteData = [['https://music.163.com/discover/playlist/?cat=', 'a.msk',
'https://music.163.com', False, 'div.tit h2.f-ff2.f-brk', 'span.name a',
'strong#play-count', 'a.u-btni.u-btni-fav i', 'a.u-btni.u-btni-share i',
'#cnt_comment_count', 'div.tags.f-cb a i', 'p#album-desc-more',
'div.u-title.u-title-1.f-cb span.sub.s-fc3', 'span.txt a b']]
sites = []
datalist = []
for row in siteData:
sites.append(Website(row[0], row[1], row[2], row[3], row[4], row[5], row[6], row[7], row[8], row[9], row[10], row[11], row[12], row[13]))
topics = "华语" #选择自己想要的歌曲风格
time.sleep(random.random()*3)
for targetSite in sites:
crawler.search(topics, targetSite)
savepath = '网易云音乐.xls'
crawler.saveData(datalist, savepath)
爬取结果
爬取的结果
由于数据太多了,这里就只截取了一部分,有兴趣可以自己运行一下;
内容可视化
可视化代码
import pandas as pd
from pyecharts.charts import Pie #画饼图
from pyecharts.charts import Bar #画柱形图
from pyecharts import options as opts
import matplotlib.pyplot as plt
# 读入数据,需要更改
#可视化
data = pd.read_excel('网易云音乐.xls')
#根据播放量排序,只取前十个
df = data.sort_values('播放量',ascending=False).head(10)
v = df['歌单名称'].values.tolist() #tolist()将数据转换为列表形式
d = df['播放量'].values.tolist()
#设置颜色
color_series = ['#2C6BA0','#2B55A1','#2D3D8E','#44388E','#6A368B'
'#7D3990','#A63F98','#C31C88','#D52178','#D5225B']
# 实例化Pie类
pie1 = Pie(init_opts=opts.InitOpts(width='1350px', height='750px'))
# 设置颜色
pie1.set_colors(color_series)
# 添加数据,设置饼图的半径,是否展示成南丁格尔图
pie1.add("", [list(z) for z in zip(v, d)],
radius=["30%", "135%"],
center=["50%", "65%"],
rosetype="area"
)
# 设置全局配置项
# TitleOpts标题配置项
# LegendOpts图例配置项 is_show是否显示图例组件
# ToolboxOpts()工具箱配置项 默认项为显示工具栏组件
pie1.set_global_opts(title_opts=opts.TitleOpts(title='播放量top10歌单'),
legend_opts=opts.LegendOpts(is_show=False),
toolbox_opts=opts.ToolboxOpts())
# 设置系列配置项
# LabelOpts标签配置项 is_show是否显示标签; font_size字体大小;
# position="inside"标签的位置,文字显示在图标里面; font_style文字风格
# font_family文字的字体系列
pie1.set_series_opts(label_opts=opts.LabelOpts(is_show=True, position="inside", font_size=12,
formatter="{b}:{c}播放量", font_style="italic",
font_weight="bold", font_family="Microsoft YaHei"
),
)
# 生成html文档
pie1.render("E:/玫瑰图.html")
print("玫瑰图保存成功!")
print("-----"*15)
# print(df['创建者'].values.tolist())
bar = (
Bar()
.add_xaxis([i for i in df['创建者'].values.tolist()])
.add_yaxis('播放量排名前十对应的评论量', df['评论量'].values.tolist())
)
bar.render("E:/条形图.html")
print("柱形图保存成功!")
词云代码
import wordcloud
import pandas as pd
import numpy as np
data = pd.read_excel('网易云音乐.xls')
#根据播放量排序,只取前十个
data = data.sort_values('播放量',ascending=False).head(10)
print(data["歌单名称"])
#font_path指明用什么样的字体风格,这里用的是电脑上都有的微软雅黑
w1 = wordcloud.WordCloud(width=1000,height=700,
background_color='white',
font_path='msyh.ttc')
txt = "\n".join(i for i in data['歌单名称'])
w1.generate(txt)
w1.to_file('E:\\词云.png')`
玫瑰图
柱形图
词云
结束,有兴趣的朋友可以来交流一下,这期的内容就到这了,大家晚安,拜拜!
转载:https://blog.csdn.net/ABC12138138/article/details/115705900