CIFAR-10数据集由10个类的60000个32x32彩色图像组成,每个类有6000个图像,有50000个训练图像和10000个测试图像。
以下代码实现基于tensorflow对此数据集的训练和验证,采用的是自定义的网络,并把相应的参数(权重)保存起来
-
import tensorflow
as tf
-
from tensorflow
import keras
-
from tensorflow.keras
import datasets, layers, optimizers, Sequential, metrics
-
import os
-
-
# 避免出现一些不必要的警告
-
os.environ[
'TF_CPP_MIN_LOG_LEVEL'] =
'2'
-
-
-
def preprocess(x, y):
-
# [0,255] => [-1 ,1]
-
x =
2 *tf.cast(x, dtype=tf.float32) /
255. -
1.
-
y = tf.cast(y, dtype=tf.int32)
-
return x, y
-
-
-
batchsz =
128
-
-
# [32, 32, 3], [10k, 1]
-
(x, y), (x_val, y_val) = datasets.cifar10.load_data()
-
y = tf.squeeze(y)
# [10k]
-
y_val = tf.squeeze(y_val)
-
y = tf.one_hot(y, depth=
10)
# [50k,10]
-
y_val = tf.one_hot(y_val, depth=
10)
# [10k, 10]
-
print(x.shape, y.shape, x_val.shape, y_val.shape)
-
-
# 数据集预处理
-
train_db = tf.data.Dataset.from_tensor_slices((x, y))
-
train_db = train_db.map(preprocess).shuffle(
10000).batch(batchsz)
-
test_db = tf.data.Dataset.from_tensor_slices((x_val, y_val))
-
test_db = test_db.map(preprocess).batch(batchsz)
-
-
# sample一个对象看它的shape,是不是和想的一样
-
sample = next(iter(train_db))
-
print(
'batch:', sample[
0].shape, sample[
1].shape)
-
-
-
# 继承
-
class MyDense(layers.Layer):
-
# 继承函数
-
# to replace standard layers.Dense()
-
def __init__(self, inp_dim, outp_dim):
-
# 初始化函数
-
super(MyDense, self).__init__()
-
-
self.kernel = self.add_variable(
'w', [inp_dim, outp_dim])
-
# self.bias = self.add_variable('b', [outp_dim])
-
-
def call(self, inputs, training=None):
-
x = inputs @ self.kernel
-
return x
-
-
-
class MyNetwork(keras.Model):
-
-
def __init__(self):
-
super(MyNetwork, self).__init__()
-
-
self.fc1 = MyDense(
32 *
32 *
3,
256)
-
self.fc2 = MyDense(
256,
128)
-
self.fc3 = MyDense(
128,
64)
-
self.fc4 = MyDense(
64,
32)
-
self.fc5 = MyDense(
32,
10)
-
-
def __call__(self, inputs, training=None):
-
"""
-
-
:param inputs:[b,32,32,3]
-
:param training:
-
:return:
-
"""
-
x = tf.reshape(inputs, [
-1,
32 *
32 *
3])
-
# [b, 32*32*3] => [b, 256]
-
x = self.fc1(x)
-
x = tf.nn.relu(x)
-
# [b, 256] => [b, 128]
-
x = self.fc2(x)
-
x = tf.nn.relu(x)
-
# [b, 128] => [b, 64]
-
x = self.fc3(x)
-
x = tf.nn.relu(x)
-
# [b, 64] => [b, 32]
-
x = self.fc4(x)
-
x = tf.nn.relu(x)
-
# [b, 32] => [b, 10]
-
x = self.fc5(x)
-
-
return x
-
-
-
network = MyNetwork()
-
network.compile(optimizers=optimizers.Adam(lr=
1e-3),
-
loss=tf.losses.CategoricalCrossentropy(from_logits=
True),
-
metrics=[
'accuracy'])
-
-
network.fit(train_db, epochs=
10, validation_data=test_db, validation_freq=
1)
-
-
-
# 把训练好的模型保存下来
-
network.evaluate(test_db)
-
network.save_weights(
'ckpt/weights.ckpt')
-
del network
-
print(
'saved to ckpt/weights.ckpt')
-
-
network = MyNetwork()
-
network.compile(optimizers=optimizers.Adam(lr=
1e-3),
-
loss=tf.losses.CategoricalCrossentropy(from_logits=
True),
-
metrics=[
'accuracy'])
-
network.load_weights(
'ckpt/weights.ckpt')
-
print(
'loaded weights from file.')
-
network.evaluate(test_db)
实现结果如下
可见准确率只有50%左右,在没有使用CNN情况下,这是很正常的,后续还会更新采用CNN进行此数据集的训练
如下模型的权重加载,准确率也是在50%左右,没有问题
可以在文件夹中查看权重保存的位置
转载:https://blog.csdn.net/qq_42593798/article/details/115712447
查看评论