小言_互联网的博客

图像视频压缩:深度学习,有一套

385人阅读  评论(0)
摘要:得益于深度神经网络提取信源特征的能力,深度学习技术在信源压缩编码领域取得了比传统方法更

本文分享自华为云社区《基于深度学习的图像视频压缩编码》,原文作者:罗鹏。

得益于深度神经网络提取信源特征的能力,深度学习技术在信源压缩编码领域取得了比传统方法更优异的效果。

基于深度学习的图像压缩编码

自编码器

Ballé1 提出了一种基于变分自编码器的端到端图像压缩模型,采用结合边信息(side information)的超先验的方案。
模型如下图所示。

Q 表示量化;AE 和 AD 分别表示算术编码和解码;卷积参数表示为层\times×长\times×宽/下采用或上采样,\uparrow↑表示上采样,\downarrow↓表示下采样。

Minnen2 提出了一种超先验结合自回归模型的方案。

循环神经网络(Recurrent Neural Network, RNN)

Google3 团队提出一种基于长短期记忆(long short-term memory, LTSM)的神经网络架构对图像进行可变压缩率的编码方法。
模型如下图所示。

上图是基于卷积核逆卷积的残差编码器,将上下层各第二和第三的卷积/逆卷积模块换成 LTSM 模块即为所提出的模型。

Google4 团队在前面工作的基础上引入了 GRU 和 ResNet 模块,并采用熵编码进一步提升了压缩率。

模型如下图所示。

生成对抗网络(Generative Adversarial Network, GAN)

Agustsson5 提出了一种基于 GAN 的图像压缩方案,可选择地对部分/全部图像生成对应语义标签;解码时,正常压缩的图像部分正常解码,无图像部分由 GAN 网络生成。
模型如下图所示。

EE 为编码器;qq 为量化器;GG 为解码和生成器;DD 为对抗器。

基于深度学习的视频压缩编码

基于深度学习的视频编码分为两种:

  • 采用深度学习替代传统视频编码中部分模块
  • 端到端采用深度学习编码压缩

部分方案

采样深度神经网络可以替代传统视频编码中的模块包括:帧内/帧间预测、变换、上下采样、环路滤波、熵编码等6。

端到端方案

Lu7 提出了一个端到端采用深度学习进行视频编码压缩的方案;其采用卷积光流估计来进行运动估计,并使用两个自编码器对光流信息和残差信息进行编码压缩。
编码框架如下图所示:

采用一个卷积网络模块进行光流估计8,以作为运动估计。
采用自编码器对光流信息进行压缩,自编码器网络如下图所示:

结合上一帧图像和光流信息,获得运动补偿图像。运动补偿网络如下图所示:

将原图像与补偿图像进行差计算获得残差,残差也使用自编码器压缩。

Rippel9 提出了一种端到端基于机器学习(包括深度学习)的视频压缩方案;采用多帧参考的光流估计做运动估计,采用自编码器对光流信息和残差编码压缩,采用机器学习做码率控制。

Reference

  1. [2018 ICLR]
    Variational image compression with a scale hyperprior
  2. [2018 NIPS]
    Joint Autoregressive and Hierarchical Priors for Learned Image Compression
  3. [2016 ICLR]
    Variable Rate Image Compression with Recurrent Neural Networks
  4. [2017 CVPR]
    Full Resolution Image Compression with Recurrent Neural Networks
  5. [2019 ICCV]
    Generative Adversarial Networks for Extreme Learned Image Compression
  6. [2019 MM]
    Deep Learning-Based Video Coding: A Review and A Case Study
  7. [2019 CVPR]
    DVC: An End-to-end Deep Video Compression Framework
  8. [2017 CVPR]
    Optical Flow Estimation using a Spatial Pyramid Network
  9. [2019 ICCV]
    Learned Video Compression

 

点击关注,第一时间了解华为云新鲜技术~


转载:https://blog.csdn.net/devcloud/article/details/115111307
查看评论
* 以上用户言论只代表其个人观点,不代表本网站的观点或立场