点击“机器学习与生成对抗网络”,关注星标
获取有趣、好玩的前沿干货!
新更:
Generative Adversarial Networks in Computer Vision: A Survey and Taxonomy 已被《ACM Computing Surveys》接收。由于GAN的更新极快,相较于之前的版本,新版做了更及时详细的总结和报道。
ACM Reference format: Zhengwei Wang, Qi She, and Tomás E. Ward. 2021. Generative Adversarial Networks in Computer Vision: A Survey and Taxonomy. ACM Comput. Surv. 54, 2, Article 37 (February 2021), 38 pages.
https://doi.org/10.1145/3439723
作者已把原文发给公众号小编,也可备注“ gan综述 ”添加运营小编好友、方便获取:
======= 旧版原文如下 =======
0 前言
前几天,一位英特尔的小伙伴给公众号发了他们最近更新的GAN综述论文,已经挂在arxiv上,总结得非常不错,今天强推一波!也欢迎各位读者进GAN交流群,与大家一起交流讨论哦!(文末扫码加入)
Generative Adversarial Networks in Computer Vision: A Survey and Taxonomy
https://arxiv.org/pdf/1906.01529.pdf
作者:
Zhengwei Wang is with V-SENSE, School of Computer Science and Statistics, Trinity College Dublin, Dublin, Ireland. e-mail: villa.wang.zhengwei@gmail.com
Qi She is with Intel Labs, Beijing, China. e-mail: qi.she@intel.com
Tom´as E. Ward is with Insight Centre for Data Analytics, Dublin City University, Dublin, Ireland. e-mail: tomas.ward@dcu.ie
本文不做详细解读,具体内容可参考原文。
1 概要

过去几年,生成对抗网络(GAN)得到了广泛的研究;其最重要而明显的影响是在计算机视觉领域,如合理自然的图像生成,图像到图像的转换,人脸属性编辑等等。
将GAN应用于实际问题,仍存在挑战,在此本文重点关注其中三个:(1)高质量的图像生成;(2)图像生成的多样性;(3)稳定的训练。
本文对GAN相关研究的进展进行了详细回顾,讨论其在计算机视觉中引人注目的应用,并提出一些有关未来研究方向的建议。

2 典型网络结构

Fully-connected GAN (FCGAN)
Semi-supervised GAN (SGAN)
SGAN是在半监督学习的背景下提出的,与监督学习(其中每个样本都需要一个标签)和非监督学习(其中不提供标签)不同,半监督学习具有一小部分示例的标签。与FCGAN相比,SGAN的鉴别器是multi-headed的,即具有softmax和Sigmoid,以对真实数据进行分类并分别区分真实和生成样本。作者在MNIST数据集上训练SGAN,结果表明与原始GAN相比,SGAN中的鉴别器和生成器均得到了改进。

Bidirectional GAN (BiGAN)

Conditional GAN (CGAN)

InfoGAN

Auxiliary Classifier GAN (AC-GAN)

Laplacian Pyramid of Adversarial Networks (LAPGAN)

Deep Convolutional GAN (DCGAN)

Boundary Equilibrium GAN (BEGAN)

Progressive GAN (PROGAN)

Self-attention GAN (SAGAN)

BigGAN
Label-noise Robust GANs (rGANs)
Your Local GAN (YLG)
AutoGAN

MSG-GAN

总结

3 代表性损失函数

Wasserstein GAN (WGAN)
WGAN-GP
Least Square GAN (LSGAN)
f-GAN
Unrolled GAN (UGAN)
Loss Sensitive GAN (LS-GAN)
Mode Regularized GAN (MRGAN)
Geometric GAN
Relativistic GAN (RGAN)
Spectral normalization GAN (SN-GAN)
RealnessGAN
Sphere GAN
Self-supervised GAN (SS-GAN)
总结

4 常见应用
数据增强
图像合成
视频生成
特征生成
5 评估指标
6 未来&总结
GAN主要还是在图像视觉上有较大进展,NLP等领域相对滞后;一些其他数据模态例如时空序列等也相对探索较少;GAN的不良使用可能会对社会产生消极影响,例如在deepfake、伪造等方面进行恶意应用。
欢迎加入GAN交流群:
猜您喜欢:
附下载 |《TensorFlow 2.0 深度学习算法实战》
转载:https://blog.csdn.net/lgzlgz3102/article/details/113931578