小言_互联网的博客

独家 | PyMC3 介绍:用于概率编程的Python包

558人阅读  评论(0)

作者:Tung T. Nguye

翻译:王雨桐

校对:廖倩颖

本文约1900字,建议阅读8分钟

本文为你介绍PyMC3原理,并结合一个实际案例教你如何使用包实现计算。

介绍

我们经常从天气预报中听到:明天的降水率是80%。这意味着什么?我们很难直白地解释这种说法,尤其是从概率学派的角度:无限次(或非多次)地重复下雨/不下雨实验是不现实的。

 

贝叶斯方法可以解释这种说法。以下句子摘自《为黑客设计的概率规划与贝叶斯方法》一书,它完美地总结了贝叶斯学派的关键思想之一。

 

贝叶斯世界观将概率解释为事件可信度的量度,即我们对事件发生有多少信心。

 

这意味着在贝叶斯方法中,我们永远不能绝对确定自己的“信念”,但可以肯定表达我们对于相关事件发生有多少信心。此外随着收集到更多数据,我们可以对自己的信念更加信心。

 

作为一名科学家,我被训练着去相信数据,并且对所有事物都很谨慎。所以我认为贝叶斯推理是相当直观的。

 

但是使用贝叶斯推断在计算和概念上通常具有挑战性。完成工作经常需要大量耗时而复杂的数学计算。即使作为数学家,我有时也觉得这些计算很乏味;特别是要快速了解待解决的问题时。

 

幸运的是我的导师AustinRochford最近向我介绍了一个名为PyMC3的程序包,它使我们能够进行数值贝叶斯推理。本文将通过一个具体示例快速介绍PyMC3。

 

一个具体的例子

假设我们有一枚硬币,我们将其翻转三遍,结果是:

[0,1,1]

 

其中0表示硬币背面向上,1表示人头向上。我们有信心说这是一个公平的硬币吗?换句话说,如果让θ为人头向上的概率,那么证据是否足以支持θ= 0.5的说法?

 

由于除了上述实验的结果外,我们对硬币一无所知,因此很难确定地说什么。从概率学派的角度来看,θ的点估计为:

尽管这个数字是合理的,但是概率学派的方法并不能真正为它提供一定的信心置信。特别是如果我们进行更多试验,则可能会得到不同的θ点估计。

 

这是贝叶斯方法可以提供一些改进的地方。这个想法很简单,因为我们对θ一无所知,因此可以假设θ可以是[0,1]上的任何值。在数学上,我们的先验信念是θ遵循均匀分布Uniform(0,1)分布。悄悄提醒需要复习数学的同学,Uniform(0,1)的pdf如下:

 

然后我们可以使用证据/观察来更新我们关于θ分布的信念。

 

让我们正式将D称为证据(我们的例子中是抛硬币的结果。)根据贝叶斯规则,后验分布可通过以下公式计算:

其中p(D |θ)是似然函数,p(θ)是先验分布(在这种情况下,为Uniform(0,1))从这里开始有两种方法。

 

显式方法

在这个特定示例中,我们可以手动完成所有操作。更准确地说,给定θ三个抛硬币中有2个人头向上的概率为:

通过假设,p(θ)= 1。接下来,我们计算分母:

通过一些简单计算,我们可以看到上述积分等于1/4,因此:

注意:通过相同的计算,我们还可以看到,如果θ的先验分布是参数为α,β的Beta分布,即p(θ)= B(α,β),并且样本大小为N,k它们是人头向上的次数,则θ的后验分布由B(α+ k,β+ N-K)给出。在我们的案例下,α=β= 1,N = 3,k = 2。

量化方法

在显式方法中,我们能够使用共轭先验来显式计算θ的后验分布。但有时使用共轭先验来简化计算,它们可能无法反映现实。此外找到共轭先验并不总是可行的。

 

我们可以通过使用马尔可夫链蒙特卡洛(MCMC)方法来近似后验分布来克服此问题。这里的数学计算很多,但是出于本文目的,我们不会深入探讨。我们将侧重解释如何使用PyMC3实现此方法。

 

运行代码前,我们导入以下软件包。


   
  1. import pymc3 as pm
  2. import scipy.stats as stats
  3. import pandas as pd
  4. import matplotlib.pyplot as plt
  5. import numpy as np
  6. %matplotlib inline
  7. from IPython.core.pylabtools import figsize

首先我们需要初始化θ的先验分布。在PyMC3中,可以通过以下代码来实现。


   
  1. with pm.Model() as model:
  2. theta=pm.Uniform( 'theta', lower= 0, upper= 1)

 

然后我们将模型与观测数据拟合。这可以通过以下代码完成。


   
  1. occurrences=np.array([1,1,0]) #our observation
  2. with model:
  3. obs=pm.Bernoulli( "obs", p,observed=occurrences) #input the observations
  4. step=pm.Metropolis()
  5. trace=pm.sample( 18000, step=step)
  6. burned_trace= trace[ 1000:]

在内部计算逻辑上,PyMC3使用Metropolis-Hastings算法来近似后验分布。Trace功能确定从后验分布中抽取的样本数。最后由于该算法在开始时可能不稳定,因此在经过一定的迭代周期后,提取的样本更有用。这就是我们代码最后一行的目的。

 

然后,我们可以绘制从后验分布获得的样本的直方图,并将其与真实密度函数进行比较。


   
  1. from IPython.core.pylabtools import figsize
  2. p_true= 0.5
  3. figsize( 12.5, 4)
  4. plt.title( r"Posterior distribution of$\theta$")
  5. plt.vlines(p_true, 0, 2, linestyle= '--',label= r"true $\theta$ (unknown)", color= 'red')
  6. plt.hist(burned_trace[ "theta"],bins= 25, histtype= 'stepfilled', density= True, color= '#348ABD')
  7. x=np.arange( 0, 1.04, 0.04)
  8. plt.plot(x, 12*x*x*( 1-x), color= 'black')
  9. plt.legend()
  10. plt.show()

我们可以清楚地看到,数值逼近非常接近真实的后验分布。

 

如果我们增加样本容量?

如前所述,获得的数据越多,我们对θ的真实值的信心就越大。让我们通过一个简单的模拟来检验我们的假设。

 

我们将随机抛硬币1000次,使用PyMC3估算θ的后验分布。然后绘制从该分布获得样本的直方图。所有这些步骤都可以通过以下代码来完成:


   
  1. N= 1000 #the number of samples
  2. occurences=np.random.binomial( 1, p= 0.5, size=N)
  3. k=occurences.sum() #the number of head
  4. #fit the observed data
  5. with pm.Model() as model1:
  6. theta=pm.Uniform( 'theta', lower= 0,upper= 1)
  7. with model1:
  8. obs=pm.Bernoulli( "obs",theta, observed=occurrences)
  9. step=pm.Metropolis()
  10. trace=pm.sample( 18000, step=step)
  11. burned_trace1=trace[ 1000:]
  12. #plot the posterior distribution of theta.
  13. p_true= 0.5
  14. figsize( 12.5, 4)
  15. plt.title( r"Posterior distribution of $\theta for sample sizeN=1000$")
  16. plt.vlines(p_true, 0, 25, linestyle= '--', label= "true $\theta$(unknown)", color= 'red')
  17. plt.hist(burned_trace1[ "theta"], bins= 25, histtype= 'stepfilled',density= True, color= '#348ABD')
  18. plt.legend()
  19. plt.show()

 

下图为我们得到的结果:

如图所示,后验分布现在以θ的真实值为中心。

我们可以通过取样本均值来估算θ。

 


   
  1. burned_trace1 ['theta'] .mean()
  2. 0 .4997847718651745

 

这确实接近真实答案。

 

结论

PyMC3可以很好地执行统计推断任务,它使概率编程变得相当轻松。

 

参考资料:

[1] https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers

原文标题:

Introduction to PyMC3: A Python package forprobabilistic programming

原文链接:

https://towardsdatascience.com/introduction-to-pymc3-a-python-package-for-probabilistic-programming-5299278b428

编辑:黄继彦

校对:林亦霖

译者简介

王雨桐,统计学在读,数据科学硕士预备,跑步不停,弹琴不止。梦想把数据可视化当作艺术,目前日常是摸着下巴看机器学习。

翻译组招募信息

工作内容:需要一颗细致的心,将选取好的外文文章翻译成流畅的中文。如果你是数据科学/统计学/计算机类的留学生,或在海外从事相关工作,或对自己外语水平有信心的朋友欢迎加入翻译小组。

你能得到:定期的翻译培训提高志愿者的翻译水平,提高对于数据科学前沿的认知,海外的朋友可以和国内技术应用发展保持联系,THU数据派产学研的背景为志愿者带来好的发展机遇。

其他福利:来自于名企的数据科学工作者,北大清华以及海外等名校学生他们都将成为你在翻译小组的伙伴。

点击文末“阅读原文”加入数据派团队~

转载须知

如需转载,请在开篇显著位置注明作者和出处(转自:数据派ID:DatapiTHU),并在文章结尾放置数据派醒目二维码。有原创标识文章,请发送【文章名称-待授权公众号名称及ID】至联系邮箱,申请白名单授权并按要求编辑。

发布后请将链接反馈至联系邮箱(见下方)。未经许可的转载以及改编者,我们将依法追究其法律责任。

点击“阅读原文”拥抱组织


转载:https://blog.csdn.net/tMb8Z9Vdm66wH68VX1/article/details/112597594
查看评论
* 以上用户言论只代表其个人观点,不代表本网站的观点或立场