导读:学习机器学习是一个不断探索和实验的过程,因此,本文将主要介绍常见的开源数据集,便于读者学习和实验各种机器学习算法。
作者:张春强 张和平 唐振
来源:大数据DT(ID:hzdashuju)
01 开源数据集介绍
在学习机器学习算法的过程中,我们经常需要数据来学习和试验算法,但是找到一组适合某种机器学习类型的数据却不那么方便。下文对常见的开源数据集进行了汇总。
1. UCI数据集
类型:比较全面,各类型数据都有涉及
网址:
http://archive.ics.uci.edu/ml/datasets.php
2. Kaggle竞赛数据集
类型:比较全面,各类型数据都有涉及
网址:https://www.kaggle.com/datasets
3. ImageNet
类型:计算机视觉数据
网址:http://image-net.org/
4. VisualData
类型:计算机视觉数据
网址:https://www.visualdata.io/
5. MS COCO
类型:计算机视觉数据
网址:http://mscoco.org/
6. Stanford CoreNLP
类型:情感分析数据
网址:
http://nlp.stanford.edu/sentiment/code.html
7. IMDB
类型:情感分析数据
网址:
http://ai.stanford.edu/~amaas/data/sentiment/
8. Sentiment140
类型:情感分析数据
网址:
http://help.sentiment140.com/for-students/
9. HotspotQA
类型:自然语言处理
网址:https://hotpotqa.github.io/
10. Enron Email
类型:自然语言处理
网址:https://www.cs.cmu.edu/~./enron/
11. Amazon
类型:自然语言处理
网址:
https://snap.stanford.edu/data/web-Amazon.html
12. 百度Apolloscapes
类型:自动驾驶
网址:http://apolloscape.auto/
13. Berkeley DeepDrive
类型:自动驾驶
网址:http://bdd-data.berkeley.edu/
14. Robotcar
类型:自动驾驶
网址:
http://robotcar-dataset.robots.ox.ac.uk/
15. Data.gov
类型:公共政府数据集
网址:https://www.data.gov/
16. Food Environment Atlas
类型:公共政府数据集
网址:
https://catalog.data.gov/dataset/food-environment-atlas-f4a22
17. Annual Survey of School System Finances
类型:公共政府数据集
网址:
https://catalog.data.gov/dataset/annual-survey-of-school-system-finances
18. NCES
类型:公共政府数据集
网址:https://nces.ed.gov/
19. Data USA
类型:公共政府数据集
网址:http://datausa.io/
20. 中国国家统计局
类型:公共政府数据集
网址:http://www.stats.gov.cn/
21. Quandl
类型:金融与经济数据集
网址:https://www.quandl.com/
22. WorldBank
类型:金融与经济数据集
网址:https://data.worldbank.org/
23. IMF
类型:金融与经济数据集
网址:https://www.imf.org/en/Data
24. Markets
类型:金融与经济数据集
网址:https://markets.ft.com/data/
25. Google Trends
类型:金融与经济数据集
网址:
http://www.google.com/trends?q=google&ctab=0&geo=all&date=all&sort=0
26. US Macro Regional
类型:金融与经济数据集
网址:
https://www.aeaweb.org/resources/data/us-macro-regional
27. Google Audioset
类型:语音数据集
网址:
https://research.google.com/audioset/
28. 2000 HUB5 English
类型:语音数据集
网址:
https://catalog.ldc.upenn.edu/LDC2002T43
29. LibriSpeech
类型:语音数据集
网址:http://www.openslr.org/12/
02 scikit-learn中的数据集
scikit-learn是Python中进行数据挖掘和建模中常用的机器学习工具包。scikit-learn的datasets模块主要提供了一些导入、在线下载及本地生成数据集的方法。模块的主要函数如下所示。
sklearn.datasets.load_<name>:自带数据集(数据量较小)
sklearn.datasets.fetch_<name>:在线下载的数据集
sklearn.datasets.make_<name>:生成指定类型的随机数据集
sklearn.datasets.load_svmlight_file:svmlight/libsvm格式的数据集
sklearn.datasets.fetch_mldata:mldata.org在线下载数据集
自带数据集的datasets模块里包含自带数据集,使用load_*加载即可,使用示例如下所示。
-
from sklearn.datasets
import load_iris
-
data = load_iris()
-
# 查看数据描述
-
print(data.DESCR)
-
X = data.data
-
y = data.target
自带数据集的基本信息及序号30、31、32的自带数据集做简单的介绍如下。读者也可以使用data.DESCR,查看其英文描述。
30. 波士顿房价数据集
调用方法:load_boston
模型类型:回归
数据规模(样本*特征):506*13
这个数据集包含了506处波士顿不同地理位置的房产的房价数据(因变量),房屋以及房屋周围的详细信息(自变量),其中包含城镇犯罪率、一氧化氮浓度、住宅平均房间数等13个维度的数据,波士顿房价数据集能够应用到回归问题上。波士顿房价数据集与属性描述如下所示。
CRIM:城镇人均犯罪率。
ZN:住宅用地超过25000平方英尺的比例。
INDUS:城镇非零售商用土地的比例。
CHAS:查理斯河空变量(如果边界是河流,则为1;否则为0)。
NOX:一氧化氮浓度。
RM:住宅平均房间数。
AGE:1940 年之前建成的自用房屋比例。
DIS:到波士顿五个中心区域的加权距离。
RAD:辐射性公路的接近指数。
TAX:每10000 美元的全值财产税率。
PTRATIO:城镇师生比例。
MEDV:自住房的平均房价,以千美元计。
31. 鸢尾花数据集
调用方法:load_iris
模型类型:分类
数据规模(样本*特征):105*4
鸢尾花数据集是一个非常经典的数据集,著名的统计学家Fisher在研究判别分析问题时收集了一些关于鸢尾花的数据,包含了150个鸢尾花样本,对应3种鸢尾花,各50个样本,以及它们各自对应的4种关于外形的数据(自变量)。该数据集可用于多分类问题,测量数据如下所示。
sepal length (cm):萼片长度。
sepal width (cm):萼片宽度。
petal length (cm):花瓣长度。
petal width (cm):花瓣宽度。
类别共分为三类:Iris Setosa、Iris Versicolour和Iris Virginica。
32. 手写数字数据集
调用方法:load_digits
模型类型:分类
数据规模(样本*特征):1797*64
这个数据集是结构化数据的经典数据,共有1797个样本,每个样本有64个元素,对应一个8×8像素点组成的矩阵,矩阵中值的范围是0~16,代表颜色的深度,控制每一个像素的黑白浓淡,所以每个样本还原到矩阵后代表一个手写体数字。
33. 糖尿病数据集
调用方法:load_diabetes
模型类型:回归
数据规模(样本*特征):422*10
34. 葡萄酒数据集
调用方法:Load_wine
模型类型:分类
数据规模(样本*特征):178*13
35. 乳腺癌数据集
调用方法:load_breast_cancer
模型类型:分类
数据规模(样本*特征):569*30
36. 体能训练数据集
调用方法:load_linnerud
模型类型:多元回归
数据规模(样本*特征):20*3
scikit-learn在线下载数据集的datasets模块包含在线下载数据集的方法,调用fetch_*接口从网络下载,示例如下所示。
-
from sklearn.datasets
import fetch_20newsgroups
-
newsgroups_train = fetch_20newsgroups(subset=
'train')
-
newsgroups_test = fetch_20newsgroups(subset=
'test')
注意,fetch_*接口由于需要从国外网址下载数据,速度可能很慢!
在线下载数据集的基本信息如下所示。
37. Olivetti脸部图像数据集
调用方法:fetch_olivetti_faces
模型类型:降维
数据规模(样本*特征):400*64*64
38. 20类新闻分类数据集(文本)
调用方法:fetch_20newsgroups
模型类型:分类
数据规模(样本*特征):18846*1
39. 20类新闻文本数据集(特征向量)
调用方法:fetch_20newsgroups_vectorized
模型类型:分类
数据规模(样本*特征):18846*130107
40. 带标签的人脸数据集
调用方法:fetch_lfw_people
模型类型:分类
数据规模(样本*特征):13233*5828
41. 路透社新闻语料数据集
调用方法:fetch_rcv1
模型类型:分类
数据规模(样本*特征):804414*47236
42. 加州住房数据集
调用方法:fetch_california_housing
模型类型:回归
数据规模(样本*特征):20640*8
43. 森林植被
调用方法:fetch_covtype
模型类型:多分类
数据规模(样本*特征):581012*54
scikit-learn包括用于以svmlight/libsvm格式加载数据集的实函数。在这种格式中,每一行都采用表格,此格式特别适用于稀疏数据集。在该模块中,使用SciPy稀疏CSR矩阵,并使用numpy数组,示例如下。svmlight / libsvm格式的公共数据集可以从网上下载。
网址:
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
-
from sklearn.datasets
import load_svmlight_file
-
X_train , y_train = load_svmlight_file (
"/ path / to / train_dataset.txt " )newsgroups_test = fetch_20newsgroups(subset=
'test')
openml.org是机器学习数据和实验的公共存储库,允许每个人上传开放数据集。sklearn.datasets能够从存储库下载数据集。示例如下:
-
from sklearn.datasets
import fetch_openml
-
mice = fetch_openml(name=
'miceprotein', version=
4)
-
print(mice.DESCR)
-
mice.url
更多数据集信息描述请查看官网:
https://www.openml.org/search?type=data
关于作者:张春强,是一位具有3年C/C++、7年大数据和机器学习经验且富有创造力的技术专家,在技术一线摸爬滚打近10年,先后就职于大型IT、世界500强企业,目前就职于某大型金融科技集团,负责数据挖掘、机器学习相关工作的管理和研发。
张和平,现就职于某互联网金融集团科技公司,任大数据模型工程师,负责机器学习在金融风控和用户运营方面的应用工作,善于运用机器学习、数据挖掘、知识图谱和大数据技术解决实际的业务问题。在大数据风控建模、用户画像、大数据平台建设等方面有丰富的实践经验。
本文摘编自《机器学习:软件工程方法与实现》,经出版方授权发布。
延伸阅读《机器学习:软件工程方法与实现》
点击上图了解及购买
转载请联系微信:DoctorData
推荐语:大型金融集团专家撰写,将软件工程方法、工具和策略应用到机器学习,提供高质量代码设计和工业应用框架。
划重点????
干货直达????
更多精彩????
在公众号对话框输入以下关键词
查看更多优质内容!
PPT | 读书 | 书单 | 硬核 | 干货 | 讲明白 | 神操作
大数据 | 云计算 | 数据库 | Python | 可视化
AI | 人工智能 | 机器学习 | 深度学习 | NLP
5G | 中台 | 用户画像 | 1024 | 数学 | 算法 | 数字孪生
据统计,99%的大咖都完成了这个神操作
????
转载:https://blog.csdn.net/zw0Pi8G5C1x/article/details/111412636