1. 暴力解法
使用for循环直接逐个求解,算法复杂度为 O ( n ) O(n) O(n)
    /**
     * <p>暴力解法</p>
     * @param startInclusive
     * @param endExclusive
     * @return
     */
    public int sumByDirect(int startInclusive, int endExclusive){
   
        int sum = 0;
        for (int i = startInclusive; i < endExclusive; i++) {
   
            sum += i;
        }
        return sum;
    }
2. 流式编程
同暴力解法一样,不过使用了声明式的流式编程,代码量更少并且更加的具有可读性
    /**
     * <p>流式编程</p>
     * @param startInclusive
     * @param endExclusive
     * @return
     */
    public int sumByStream(int startInclusive, int endExclusive){
   
        return IntStream.range(startInclusive, endExclusive).sum();
    }
3. 利用求和公式
利用等差数列求和公式
  S n = ( a 1 + a 2 ) × n 2 S_n=\cfrac{(a_1+a_2)\times n}{2} Sn=2(a1+a2)×n
 复杂度为 O ( 1 ) O(1) O(1)
    /**
     * <p>利用求和公式</p>
     * @param startInclusive
     * @param endExclusive
     * @return
     */
    public int sumByFormula(int startInclusive, int endExclusive){
   
        return ((startInclusive + endExclusive - 1) * (endExclusive - startInclusive) )  >> 1;
    }
4. 测试
    @Test
    public void Test() {
   
        System.out.println("sumByDirect=" + sumByDirect(1, 101));
        System.out.println("sumByStream=" + sumByStream(1, 101));
        System.out.println("sumByFormula=" + sumByFormula(1, 101));
    }
输出:
sumByDirect=5050
sumByStream=5050
sumByFormula=5050
转载:https://blog.csdn.net/Cap220590/article/details/109193838
查看评论
					