大家好,我是不温卜火,是一名计算机学院大数据专业大二的学生,昵称来源于成语—
不温不火
,本意是希望自己性情温和
。作为一名互联网行业的小白,博主写博客一方面是为了记录自己的学习过程,另一方面是总结自己所犯的错误希望能够帮助到很多和自己一样处于起步阶段的萌新。但由于水平有限,博客中难免会有一些错误出现,有纰漏之处恳请各位大佬不吝赐教!暂时只有csdn这一个平台,博客主页:https://buwenbuhuo.blog.csdn.net/
本片博文为大家带来的是JVM 调优。
对于 JVM 调优,首先应该明确,full gc/minor gc,都会导致JVM的工作线程停止工作,即stop the world。
1. 降低cache操作的内存占比
- 静态内存管理机制
根据 Spark 静态内存管理机制,堆内存被划分为了两块,Storage 和 Execution。
Storage 主要用于缓存 RDD数据和 broadcast 数据,Execution主要用于缓存在shuffle过程中产生的中间数据,Storage占系统内存的60%,Execution占系统内存的20%,并且两者完全独立。 在一般情况下,Storage的内存都提供给了cache操作,但是如果在某些情况下cache操作内存不是很紧张,而task的算子中创建的对象很多,Execution内存又相对较小,这回导致频繁的minor gc,甚至于频繁的full gc,进而导致Spark频繁的停止工作,性能影响会很大。 在Spark UI中可以查看每个stage的运行情况,包括每个task的运行时间、gc时间等等,如果发现gc太频繁,时间太长,就可以考虑调节Storage的内存占比,让task执行算子函数式,有更多的内存可以使用。 Storage内存区域可以通过spark.storage.memoryFraction参数进行指定,默认为0.6,即60%,可以逐级向下递减,
val conf = new SparkConf()
.set("spark.storage.memoryFraction", "0.4")
- 统一内存管理机制
根据Spark统一内存管理机制,堆内存被划分为了两块,Storage 和 Execution。Storage 主要用于缓存数据,Execution 主要用于缓存在 shuffle 过程中产生的中间数据,两者所组成的内存部分称为统一内存,Storage和Execution各占统一内存的50%,由于动态占用机制的实现,shuffle 过程需要的内存过大时,会自动占用Storage 的内存区域,因此无需手动进行调节。
2. 调节Executor堆外内存
Executor 的堆外内存主要用于程序的共享库、Perm Space、 线程Stack和一些Memory mapping等, 或者类C方式allocate object。
有时,如果你的Spark作业处理的数据量非常大,达到几亿的数据量,此时运行 Spark 作业会时不时地报错,例如shuffle output file cannot find,executor lost,task lost,out of memory等,这可能是Executor的堆外内存不太够用,导致 Executor 在运行的过程中内存溢出。
stage 的 task 在运行的时候,可能要从一些 Executor 中去拉取 shuffle map output 文件,但是 Executor 可能已经由于内存溢出挂掉了,其关联的 BlockManager 也没有了,这就可能会报出 shuffle output file cannot find,executor lost,task lost,out of memory等错误,此时,就可以考虑调节一下Executor的堆外内存,也就可以避免报错,与此同时,堆外内存调节的比较大的时候,对于性能来讲,也会带来一定的提升。
默认情况下,Executor 堆外内存上限大概为300多MB,在实际的生产环境下,对海量数据进行处理的时候,这里都会出现问题,导致Spark作业反复崩溃,无法运行,此时就会去调节这个参数,到至少1G,甚至于2G、4G。
Executor堆外内存的配置需要在spark-submit脚本里配置,
--conf spark.executor.memoryOverhead=2048
以上参数配置完成后,会避免掉某些JVM OOM的异常问题,同时,可以提升整体 Spark 作业的性能。
3. 调节连接等待时长
在 Spark 作业运行过程中,Executor 优先从自己本地关联的 BlockManager 中获取某份数据,如果本地BlockManager没有的话,会通过TransferService远程连接其他节点上Executor的BlockManager来获取数据。
如果 task 在运行过程中创建大量对象或者创建的对象较大,会占用大量的内存,这会导致频繁的垃圾回收,但是垃圾回收会导致工作现场全部停止,也就是说,垃圾回收一旦执行,Spark 的 Executor 进程就会停止工作,无法提供相应,此时,由于没有响应,无法建立网络连接,会导致网络连接超时。
在生产环境下,有时会遇到file not found、file lost这类错误,在这种情况下,很有可能是Executor的BlockManager在拉取数据的时候,无法建立连接,然后超过默认的连接等待时长120s后,宣告数据拉取失败,如果反复尝试都拉取不到数据,可能会导致 Spark 作业的崩溃。这种情况也可能会导致 DAGScheduler 反复提交几次 stage,TaskScheduler 返回提交几次 task,大大延长了我们的 Spark 作业的运行时间。
此时,可以考虑调节连接的超时时长,连接等待时长需要在spark-submit脚本中进行设置
--conf spark.core.connection.ack.wait.timeout=300
调节连接等待时长后,通常可以避免部分的XX文件拉取失败、XX文件lost等报错。
本次的分享就到这里了,
好书不厌读百回,熟读课思子自知。而我想要成为全场最靓的仔,就必须坚持通过学习来获取更多知识,用知识改变命运,用博客见证成长,用行动证明我在努力。
如果我的博客对你有帮助、如果你喜欢我的博客内容,请“点赞” “评论”“收藏”
一键三连哦!听说点赞的人运气不会太差,每一天都会元气满满呦!如果实在要白嫖的话,那祝你开心每一天,欢迎常来我博客看看。
码字不易,大家的支持就是我坚持下去的动力。点赞后不要忘了关注
我哦!
转载:https://blog.csdn.net/qq_16146103/article/details/108180477