小言_互联网的博客

【玩转数据结构 从入门到进阶10学习笔记】并查集

380人阅读  评论(0)

并查集

Quick Union


这个版本的目的是使用一个数组构建一棵指向父节点的树,首先是将每个元素看做是一个节点,让每个节点指向自己,接下来做union操作

这个操作是将3所在集合的根节点指向8所在集合的根节点


public class UnionFind2 implements UF {

    // 我们的第二版Union-Find, 使用一个数组构建一棵指向父节点的树
    // parent[i]表示第一个元素所指向的父节点
    private int[] parent;

    // 构造函数
    public UnionFind2(int size){

        parent = new int[size];

        // 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合
        for( int i = 0 ; i < size ; i ++ )
            parent[i] = i;
    }

    @Override
    public int getSize(){
        return parent.length;
    }

    // 查找过程, 查找元素p所对应的集合编号
    // O(h)复杂度, h为树的高度
    private int find(int p){
        if(p < 0 || p >= parent.length)
            throw new IllegalArgumentException("p is out of bound.");

        // 不断去查询自己的父亲节点, 直到到达根节点
        // 根节点的特点: parent[p] == p
        while(p != parent[p])
            p = parent[p];
        return p;
    }

    // 查看元素p和元素q是否所属一个集合
    // O(h)复杂度, h为树的高度
    @Override
    public boolean isConnected( int p , int q ){
        return find(p) == find(q);
    }

    // 合并元素p和元素q所属的集合
    // O(h)复杂度, h为树的高度
    @Override
    public void unionElements(int p, int q){

        int pRoot = find(p);
        int qRoot = find(q);
        if( pRoot == qRoot )
            return;
        parent[pRoot] = qRoot;
    }
}

基于Size的优化

在上一个合并的过程中,会出现合成链表的情况,这就造成了树的高度不断增加,影响性能,一个简单的解决方案就是考虑集合元素个数,让元素个数少的集合指向元素个数多的集合。

public class UnionFind3 implements UF{

    private int[] parent; // parent[i]表示第一个元素所指向的父节点
    private int[] sz;     // sz[i]表示以i为根的集合中元素个数

    // 构造函数
    public UnionFind3(int size){

        parent = new int[size];
        sz = new int[size];

        // 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合
        for(int i = 0 ; i < size ; i ++){
            parent[i] = i;
            sz[i] = 1;
        }
    }

 public void unionElements(int p, int q){

        int pRoot = find(p);
        int qRoot = find(q);

        if(pRoot == qRoot)
            return;

        // 根据两个元素所在树的元素个数不同判断合并方向
        // 将元素个数少的集合合并到元素个数多的集合上
        if(sz[pRoot] < sz[qRoot]){
            parent[pRoot] = qRoot;
            sz[qRoot] += sz[pRoot];
        }
        else{ // sz[qRoot] <= sz[pRoot]
            parent[qRoot] = pRoot;
            sz[pRoot] += sz[qRoot];
        }
    }

基于Rank的优化

基于Size的优化并不是最好的优化方式,如下图,若是基于Size优化,则是8指向7,而最优的方式应该是7指向8,所以我们应该根据集合的层数,层数低的指向层数高的。

public class UnionFind4 implements UF {

    private int[] rank;   // rank[i]表示以i为根的集合所表示的树的层数
    private int[] parent; // parent[i]表示第i个元素所指向的父节点

    // 构造函数
    public UnionFind4(int size){

        rank = new int[size];
        parent = new int[size];

        // 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合
        for( int i = 0 ; i < size ; i ++ ){
            parent[i] = i;
            rank[i] = 1;
        }
    }
    public void unionElements(int p, int q){

        int pRoot = find(p);
        int qRoot = find(q);

        if( pRoot == qRoot )
            return;

        // 根据两个元素所在树的rank不同判断合并方向
        // 将rank低的集合合并到rank高的集合上
        if(rank[pRoot] < rank[qRoot])
            parent[pRoot] = qRoot;
        else if(rank[qRoot] < rank[pRoot])
            parent[qRoot] = pRoot;
        else{ // rank[pRoot] == rank[qRoot]
            parent[pRoot] = qRoot;
            rank[qRoot] += 1;   // 此时, 我维护rank的值
        }
    }

路径压缩


第一种路径压缩的方式,就是在基于Rank优化基础上,修改find操作,

 private int find(int p){
        if(p < 0 || p >= parent.length)
            throw new IllegalArgumentException("p is out of bound.");

        while( p != parent[p] ){
            parent[p] = parent[parent[p]];
            p = parent[p];
        }
        return p;
    }

路径压缩2


第二种方式优化性能更加好,利用递归,使得集合所有节点直接指向根节点,

 private int find(int p){
        if(p < 0 || p >= parent.length)
            throw new IllegalArgumentException("p is out of bound.");

        // path compression 2, 递归算法
        if(p != parent[p])
            parent[p] = find(parent[p]);
        return parent[p];
    }

转载:https://blog.csdn.net/weixin_43372187/article/details/106305561
查看评论
* 以上用户言论只代表其个人观点,不代表本网站的观点或立场