小言_互联网的博客

Go语言全栈开发:并发(上)

303人阅读  评论(0)

并发是编程里面一个非常重要的概念,Go语言在语言层面天生支持并发,这也是Go语言流行的一个很重要的原因。

Go语言中的并发编程

并发与并行

并发:同一时间段,利用单个CPU快速来回切换执行多个任务。

并行:同一时刻,利用多个CPU并行执行多个任务。

Go语言的并发通过goroutine实现。goroutine类似于线程,属于用户态的线程,我们可以根据需要创建成千上万个goroutine并发工作。goroutine是由Go语言的运行时(runtime)调度完成,而线程是由操作系统调度完成。

Go语言还提供channel在多个goroutine间进行通信。goroutinechannel是 Go 语言秉承的 CSP(Communicating Sequential Process)并发模式的重要实现基础。

goroutine

在java/c++中我们要实现并发编程的时候,我们通常需要自己维护一个线程池,并且需要自己去包装一个又一个的任务,同时需要自己去调度线程执行任务并维护上下文切换,这一切通常会耗费程序员大量的心智。那么能不能有一种机制,程序员只需要定义很多个任务,让系统去帮助我们把这些任务分配到CPU上实现并发执行呢?

Go语言中的goroutine就是这样一种机制,goroutine的概念类似于线程,但 goroutine是由Go的运行时(runtime)调度和管理的。Go程序会智能地将 goroutine 中的任务合理地分配给每个CPU。Go语言之所以被称为现代化的编程语言,就是因为它在语言层面已经内置了调度和上下文切换的机制。

在Go语言编程中你不需要去自己写进程、线程、协程,你的技能包里只有一个技能–goroutine,当你需要让某个任务并发执行的时候,你只需要把这个任务包装成一个函数,开启一个goroutine去执行这个函数就可以了,就是这么简单粗暴。

| 使用goroutine

Go语言中使用goroutine非常简单,只需要在调用函数的时候在前面加上go关键字,就可以为一个函数创建一个goroutine

一个goroutine必定对应一个函数,可以创建多个goroutine去执行相同的函数。

| 启动单个goroutine

启动goroutine的方式非常简单,只需要在调用的函数(普通函数和匿名函数)前面加上一个go关键字。

func hello() {
	fmt.Println("Hello Goroutine!")
}
func main() {
	hello()
	fmt.Println("main goroutine done!")
}

这个示例中hello函数和下面的语句是串行的,执行的结果是打印完Hello Goroutine!后打印main goroutine done!

接下来我们在调用hello函数前面加上关键字go,也就是启动一个goroutine去执行hello这个函数。

func main() {
	go hello() // 启动另外一个goroutine去执行hello函数
	fmt.Println("main goroutine done!")
}

这一次的执行结果只打印了main goroutine done!,并没有打印Hello Goroutine!。为什么呢?

在程序启动时,Go程序就会为main()函数创建一个默认的goroutine

当main()函数返回的时候该goroutine就结束了,所有在main()函数中启动的goroutine会一同结束,main函数所在的goroutine就像是权利的游戏中的夜王,其他的goroutine都是异鬼,夜王一死它转化的那些异鬼也就全部GG了。

所以我们要想办法让main函数等一等hello函数,最简单粗暴的方式就是time.Sleep了。

func main() {
	go hello() // 启动另外一个goroutine去执行hello函数
	fmt.Println("main goroutine done!")
	time.Sleep(time.Second)
}

执行上面的代码你会发现,这一次先打印main goroutine done!,然后紧接着打印Hello Goroutine!

首先为什么会先打印main goroutine done!是因为我们在创建新的goroutine的时候需要花费一些时间,而此时main函数所在的goroutine是继续执行的。

| 启动多个goroutine

在Go语言中实现并发就是这样简单,我们还可以启动多个goroutine。让我们再来一个例子: (这里使用了sync.WaitGroup来实现goroutine的同步)

var wg sync.WaitGroup

func hello(i int) {
	defer wg.Done() // goroutine结束就登记-1
	fmt.Println("Hello Goroutine!", i)
}
func main() {

	for i := 0; i < 10; i++ {
		wg.Add(1) // 启动一个goroutine就登记+1
		go hello(i)
	}
	wg.Wait() // 等待所有登记的goroutine都结束
}

多次执行上面的代码,会发现每次打印的数字的顺序都不一致。这是因为10个goroutine是并发执行的,而goroutine的调度是随机的。

goroutine与线程

| 可增长的栈

OS线程(操作系统线程)一般都有固定的栈内存(通常为2MB),一个goroutine的栈在其生命周期开始时只有很小的栈(典型情况下2KB),goroutine的栈不是固定的,他可以按需增大和缩小,goroutine的栈大小限制可以达到1GB,虽然极少会用到这个大。所以在Go语言中一次创建十万左右的goroutine也是可以的。

| goroutine调度

GPM是Go语言运行时(runtime)层面的实现,是go语言自己实现的一套调度系统。区别于操作系统调度OS线程。

  • G很好理解,就是个goroutine的,里面除了存放本goroutine信息外 还有与所在P的绑定等信息。

  • P管理着一组goroutine队列,P里面会存储当前goroutine运行的上下文环境(函数指针,堆栈地址及地址边界),P会对自己管理的goroutine队列做一些调度(比如把占用CPU时间较长的goroutine暂停、运行后续的goroutine等等)当自己的队列消费完了就去全局队列里取,如果全局队列里也消费完了会去其他P的队列里抢任务。

  • M(machine)是Go运行时(runtime)对操作系统内核线程的虚拟, M与内核线程一般是一一映射的关系, 一个groutine最终是要放到M上执行的;

P与M一般也是一一对应的。他们关系是: P管理着一组G挂载在M上运行。当一个G长久阻塞在一个M上时,runtime会新建一个M,阻塞G所在的P会把其他的G 挂载在新建的M上。当旧的G阻塞完成或者认为其已经死掉时 回收旧的M。

P的个数是通过runtime.GOMAXPROCS设定(最大256),Go1.5版本之后默认为物理线程数。 在并发量大的时候会增加一些P和M,但不会太多,切换太频繁的话得不偿失。

单从线程调度讲,Go语言相比起其他语言的优势在于OS线程是由OS内核来调度的,goroutine则是由Go运行时(runtime)自己的调度器调度的,这个调度器使用一个称为m:n调度的技术(复用/调度m个goroutine到n个OS线程)。 其一大特点是goroutine的调度是在用户态下完成的, 不涉及内核态与用户态之间的频繁切换,包括内存的分配与释放,都是在用户态维护着一块大的内存池, 不直接调用系统的malloc函数(除非内存池需要改变),成本比调度OS线程低很多。 另一方面充分利用了多核的硬件资源,近似的把若干goroutine均分在物理线程上, 再加上本身goroutine的超轻量,以上种种保证了go调度方面的性能。

更多内容点击:深入Golang调度器之GMP模型

| GOMAXPROCS调度

Go运行时的调度器使用GOMAXPROCS参数来确定需要使用多少个OS线程来同时执行Go代码。默认值是机器上的CPU核心数。例如在一个8核心的机器上,调度器会把Go代码同时调度到8个OS线程上(GOMAXPROCS是m:n调度中的n)。

Go语言中可以通过runtime.GOMAXPROCS()函数设置当前程序并发时占用的CPU逻辑核心数。

Go1.5版本之前,默认使用的是单核心执行。Go1.5版本之后,默认使用全部的CPU逻辑核心数。

我们可以通过将任务分配到不同的CPU逻辑核心上实现并行的效果,这里举个例子:

func a() {
	for i := 1; i < 10; i++ {
		fmt.Println("A:", i)
	}
}

func b() {
	for i := 1; i < 10; i++ {
		fmt.Println("B:", i)
	}
}

func main() {
	runtime.GOMAXPROCS(1)
	go a()
	go b()
	time.Sleep(time.Second)
}

两个任务只有一个逻辑核心,此时是做完一个任务再做另一个任务。 将逻辑核心数设为2,此时两个任务并行执行,代码如下。

func a() {
	for i := 1; i < 10; i++ {
		fmt.Println("A:", i)
	}
}

func b() {
	for i := 1; i < 10; i++ {
		fmt.Println("B:", i)
	}
}

func main() {
	runtime.GOMAXPROCS(2)
	go a()
	go b()
	time.Sleep(time.Second)
}

Go语言中的操作系统线程和goroutine的关系:

  1. 一个操作系统线程对应用户态多个goroutine。
  2. go程序可以同时使用多个操作系统线程。
  3. goroutine和OS线程是多对多的关系,即m:n。
channel

单纯地将函数并发执行是没有意义的。函数与函数间需要交换数据才能体现并发执行函数的意义。

虽然可以使用共享内存进行数据交换,但是共享内存在不同的goroutine中容易发生竞态问题。为了保证数据交换的正确性,必须使用互斥量对内存进行加锁,这种做法势必造成性能问题。

Go语言的并发模型是CSP(Communicating Sequential Processes),提倡 通过通信共享内存 而不是 通过共享内存而实现通信

如果说goroutine是Go程序并发的执行体,channel就是它们之间的连接。channel是可以让一个goroutine发送特定值到另一个goroutine的通信机制。

Go 语言中的通道(channel)是一种特殊的类型。通道像一个传送带或者队列,总是遵循先入先出(First In First Out)的规则,保证收发数据的顺序。每一个通道都是一个具体类型的导管,也就是声明channel的时候需要为其指定元素类型。

| channel类型

channel是一种类型,一种引用类型。声明通道类型的格式如下:

var 变量 chan 元素类型

举几个例子:

var ch1 chan int   // 声明一个传递整型的通道
var ch2 chan bool  // 声明一个传递布尔型的通道
var ch3 chan []int // 声明一个传递int切片的通道

| 创建channel

通道是引用类型,通道类型的空值是nil

var ch chan int
fmt.Println(ch) // <nil>

声明的通道后需要使用make函数初始化之后才能使用。

创建channel的格式如下:

make(chan 元素类型, [缓冲大小])

channel的缓冲大小是可选的。

举几个例子:

ch4 := make(chan int)
ch5 := make(chan bool)
ch6 := make(chan []int)

| channel操作

通道有发送(send)、接收(receive)和关闭(close)三种操作。

发送和接收都使用<-符号。

现在我们先使用以下语句定义一个通道:

ch := make(chan int)

发送

将一个值发送到通道中。

ch <- 10 // 把10发送到ch中

接收

从一个通道中接收值。

x := <- ch // 从ch中接收值并赋值给变量x
<-ch       // 从ch中接收值,忽略结果

关闭

我们通过调用内置的close函数来关闭通道。

close(ch)

关于关闭通道需要注意的事情是,只有在通知接收方goroutine所有的数据都发送完毕的时候才需要关闭通道。通道是可以被垃圾回收机制回收的,它和关闭文件是不一样的,在结束操作之后关闭文件是必须要做的,但关闭通道不是必须的。

关闭后的通道有以下特点:

  1. 对一个关闭的通道再发送值就会导致panic。
  2. 对一个关闭的通道进行接收会一直获取值直到通道为空。
  3. 对一个关闭的并且没有值的通道执行接收操作会得到对应类型的零值。
  4. 关闭一个已经关闭的通道会导致panic。

| 无缓冲的通道

无缓冲的通道又称为阻塞的通道。我们来看一下下面的代码:

func main() {
	ch := make(chan int)
	ch <- 10
	fmt.Println("发送成功")
}

上面这段代码能够通过编译,但是执行的时候会出现以下错误:

fatal error: all goroutines are asleep - deadlock!

goroutine 1 [chan send]:
main.main()
        .../src/github.com/Q1mi/studygo/day06/channel02/main.go:8 +0x54

为什么会出现deadlock错误呢?

因为我们使用ch := make(chan int)创建的是无缓冲的通道,无缓冲的通道只有在有人接收值的时候才能发送值。就像你住的小区没有快递柜和代收点,快递员给你打电话必须要把这个物品送到你的手中,简单来说就是无缓冲的通道必须有接收才能发送。

上面的代码会阻塞在ch <- 10这一行代码形成死锁,那如何解决这个问题呢?

一种方法是启用一个goroutine去接收值,例如:

func recv(c chan int) {
	ret := <-c
	fmt.Println("接收成功", ret)
}
func main() {
	ch := make(chan int)
	go recv(ch) // 启用goroutine从通道接收值
	ch <- 10
	fmt.Println("发送成功")
}

无缓冲通道上的发送操作会阻塞,直到另一个goroutine在该通道上执行接收操作,这时值才能发送成功,两个goroutine将继续执行。相反,如果接收操作先执行,接收方的goroutine将阻塞,直到另一个goroutine在该通道上发送一个值。

使用无缓冲通道进行通信将导致发送和接收的goroutine同步化。因此,无缓冲通道也被称为同步通道

| 有缓冲的通道

解决上面问题的方法还有一种就是使用有缓冲区的通道。我们可以在使用make函数初始化通道的时候为其指定通道的容量,例如:

func main() {
	ch := make(chan int, 1) // 创建一个容量为1的有缓冲区通道
	ch <- 10
	fmt.Println("发送成功")
}

只要通道的容量大于零,那么该通道就是有缓冲的通道,通道的容量表示通道中能存放元素的数量。就像你小区的快递柜只有那么个多格子,格子满了就装不下了,就阻塞了,等到别人取走一个快递员就能往里面放一个。

我们可以使用内置的len函数获取通道内元素的数量,使用cap函数获取通道的容量,虽然我们很少会这么做。

| for range从通道循环取值

当向通道中发送完数据时,我们可以通过close函数来关闭通道。

当通道被关闭时,再往该通道发送值会引发panic,从该通道取值的操作会先取完通道中的值,再然后取到的值一直都是对应类型的零值。那如何判断一个通道是否被关闭了呢?

我们来看下面这个例子:

// channel 练习
func main() {
	ch1 := make(chan int)
	ch2 := make(chan int)
	// 开启goroutine将0~100的数发送到ch1中
	go func() {
		for i := 0; i < 100; i++ {
			ch1 <- i
		}
		close(ch1)
	}()
	// 开启goroutine从ch1中接收值,并将该值的平方发送到ch2中
	go func() {
		for {
			i, ok := <-ch1 // 通道关闭后再取值ok=false
			if !ok {
				break
			}
			ch2 <- i * i
		}
		close(ch2)
	}()
	// 在主goroutine中从ch2中接收值打印
	for i := range ch2 { // 通道关闭后会退出for range循环
		fmt.Println(i)
	}
}

从上面的例子中我们看到有两种方式在接收值的时候判断该通道是否被关闭,不过我们通常使用的是for range的方式。使用for range遍历通道,当通道被关闭的时候就会退出for range

| 单向通道

有的时候我们会将通道作为参数在多个任务函数间传递,很多时候我们在不同的任务函数中使用通道都会对其进行限制,比如限制通道在函数中只能发送或只能接收。

Go语言中提供了 单向通道 来处理这种情况。例如,我们把上面的例子改造如下:

func counter(out chan<- int) {
	for i := 0; i < 100; i++ {
		out <- i
	}
	close(out)
}

func squarer(out chan<- int, in <-chan int) {
	for i := range in {
		out <- i * i
	}
	close(out)
}
func printer(in <-chan int) {
	for i := range in {
		fmt.Println(i)
	}
}

func main() {
	ch1 := make(chan int)
	ch2 := make(chan int)
	go counter(ch1)
	go squarer(ch2, ch1)
	printer(ch2)
}

其中,

  • chan<- int是一个只写单向通道(只能对其写入int类型值),可以对其执行发送操作但是不能执行接收操作;

  • <-chan int是一个只读单向通道(只能从其读取int类型值),可以对其执行接收操作但是不能执行发送操作。

  • 在函数传参及任何赋值操作中可以将双向通道转换为单向通道,但反过来是不可以的。

| 通道总结

channel常见的异常总结,如下图:

关闭已经关闭的channel也会引发panic

worker pool(goroutine池)

在工作中我们通常会使用可以指定启动的goroutine数量–worker pool模式,控制goroutine的数量,防止goroutine泄漏和暴涨。

一个简易的work pool示例代码如下:

func worker(id int, jobs <-chan int, results chan<- int) {
	for j := range jobs {
		fmt.Printf("worker:%d start job:%d\n", id, j)
		time.Sleep(time.Second)
		fmt.Printf("worker:%d end job:%d\n", id, j)
		results <- j * 2
	}
}


func main() {
	jobs := make(chan int, 100)
	results := make(chan int, 100)
	// 开启3个goroutine
	for w := 1; w <= 3; w++ {
		go worker(w, jobs, results)
	}
	// 5个任务
	for j := 1; j <= 5; j++ {
		jobs <- j
	}
	close(jobs)
	// 输出结果
	for a := 1; a <= 5; a++ {
		<-results
	}
}
select多路复用

在某些场景下我们需要同时从多个通道接收数据。通道在接收数据时,如果没有数据可以接收将会发生阻塞。你也许会写出如下代码使用遍历的方式来实现:

for{
    // 尝试从ch1接收值
    data, ok := <-ch1
    // 尝试从ch2接收值
    data, ok := <-ch2
    …
}

这种方式虽然可以实现从多个通道接收值的需求,但是运行性能会差很多。为了应对这种场景,Go内置了select关键字,可以同时响应多个通道的操作。

select的使用类似于switch语句,它有一系列case分支和一个默认的分支。每个case会对应一个通道的通信(接收或发送)过程。select会一直等待,直到某个case的通信操作完成时,就会执行case分支对应的语句。具体格式如下:

select{
    case <-ch1:
        ...
    case data := <-ch2:
        ...
    case ch3<-data:
        ...
    default:
        默认操作
}

举个小例子来演示下select的使用:

func main() {
	ch := make(chan int, 1)
	for i := 0; i < 10; i++ {
		select {
		case x := <-ch:
			fmt.Println(x)
		case ch <- i:
		}
	}
}

使用select语句能提高代码的可读性。

  • 可处理一个或多个channel的发送/接收操作。
  • 如果多个case同时满足,select会随机选择一个。
  • 对于没有caseselect{}会一直等待,可用于阻塞main函数。

【对比python】

进程

运行中的程序就是一个进程,所有的进程都是通过它的父进程来创建的。因此,运行起来的python程序也是一个进程,那么我们也可以在程序中再创建进程。

multiprocess不是一个模块而是python中一个操作、管理进程的包。 之所以叫multi是取自multiple的多功能的意思,在这个包中几乎包含了和进程有关的所有子模块。由于提供的子模块非常多,为了方便大家归类记忆,我将这部分大致分为四个部分:

  1. 创建进程部分
  2. 进程同步部分
  3. 进程池部分
  4. 进程之间数据共享

创建进程部分: multiprocess.process模块

process模块是一个创建进程的模块,借助这个模块,就可以完成进程的创建。

Process(group , target , name , args , kwargs)# 由该类实例化得到的对象,表示一个子进程中的任务(尚未启动)

参数介绍:

group参数未使用,值始终为None
target表示调用对象,即子进程要执行的任务
args表示调用对象的位置参数元组,args=(1,2,'kkk',)
kwargs表示调用对象的字典,kwargs={'name':'kkk','age':18}
name为子进程的名称

强调:
1.需要使用关键字的方式来指定参数
2.args指定的为传给target函数的位置参数,是一个元组形式,必须有逗号

# 开进程的方法一
import time
import random
from multiprocessing import Process


def piao(name):
    print('%s piaoing' % name)
    time.sleep(random.randrange(1, 5))
    print('%s piao end' % name)


if __name__ == '__main__':
    p1 = Process(target=piao, args=('kkk',))  # 必须加,号
    p2 = Process(target=piao, args=('ttt',))
    p3 = Process(target=piao, args=('aaa',))
    p4 = Process(target=piao, args=('bbb',))

    p1.start()
    p2.start()
    p3.start()
    p4.start()
    print('主线程')
# 开进程的方法二:
import time
import random
from multiprocessing import Process


class Piao(Process):
    def __init__(self, name):
        super().__init__()
        self.name = name

    def run(self):
        print('%s piaoing' % self.name)

        time.sleep(random.randrange(1, 5))
        print('%s piao end' % self.name)


if __name__ == '__main__':
    p1 = Piao('ttt')
    p2 = Piao('aaa')
    p3 = Piao('bbb')
    p4 = Piao('ccc')
    p1.start()  # start会自动调用run
    p2.start()
    p3.start()
    p4.start()
    print('主线程')

方法介绍

  • p.start():启动进程,并调用该子进程中的p.run()

  • p.run():进程启动时运行的方法,正是它去调用target指定的函数,我们自定义类的类中一定要实现该方法

  • p.terminate():强制终止进程p,不会进行任何清理操作,如果p创建了子进程,该子进程就成了僵尸进程,使用该方法需要特别小心这种情况。如果p还保存了一个锁那么也将不会被释放,进而导致死锁

  • p.is_alive():如果p仍然运行,返回True

  • p.join([timeout]):主线程等待p终止(强调:是主线程处于等的状态,而p是处于运行的状态)。timeout是可选的超时时间,需要强调的是,p.join只能join住start开启的进程,而不能join住run开启的进程

属性介绍

  • p.daemon:默认值为False,如果设为True,代表p为后台运行的守护进程,当p的父进程终止时,p也随之终止,并且设定为True后,p不能创建自己的新进程,必须在p.start()之前设置

  • p.name:进程的名称

  • p.pid:进程的pid

  • p.exitcode:进程在运行时为None、如果为–N,表示被信号N结束(了解即可)

  • p.authkey:进程的身份验证键,默认是由os.urandom()随机生成的32字符的字符串。这个键的用途是为涉及网络连接的底层进程间通信提供安全性,这类连接只有在具有相同的身份验证键时才能成功(了解即可)

强调: 在Windows操作系统中由于没有fork(linux操作系统中创建进程的机制),在创建子进程的时候会自动 import 启动它的这个文件,而在 import 的时候又执行了整个文件。因此如果将process()直接写在文件中就会无限递归创建子进程报错。所以必须把创建子进程的部分使用if _name_ ==‘__main__’ 判断保护起来,import 的时候 ,就不会递归运行了。

进程间数据隔离

进程隔离是为保护操作系统中进程互不干扰而设计的一组不同硬件和软件的技术这个技术是为了避免进程A写入进程B的情况发生。 进程的隔离实现,使用了虚拟地址空间。进程A的虚拟地址和进程B的虚拟地址不同,这样就防止进程A将数据信息写入进程B。进程隔离的安全性通过禁止进程间内存的访问可以方便实现。

未完待续。。。


转载:https://blog.csdn.net/qq_35289736/article/details/106154714
查看评论
* 以上用户言论只代表其个人观点,不代表本网站的观点或立场