一、Redis 简介
Redis 的优点
以下是 Redis 的一些优点:
- 异常快 - Redis 非常快,每秒可执行大约 110000 次的设置(SET)操作,每秒大约可执行 81000 次的读取/获取(GET)操作。
- 支持丰富的数据类型 - Redis 支持开发人员常用的大多数数据类型,例如列表,集合,排序集和散列等等。这使得 Redis 很容易被用来解决各种问题,因为我们知道哪些问题可以更好使用地哪些数据类型来处理解决。
- 操作具有原子性 - 所有 Redis 操作都是原子操作,这确保如果两个客户端并发访问,Redis 服务器能接收更新的值。
- 多实用工具 - Redis 是一个多实用工具,可用于多种用例,如:缓存,消息队列(Redis 本地支持发布/订阅),应用程序中的任何短期数据,例如,web应用程序中的会话,网页命中计数等。
二、Redis 五种基本数据结构
Redis 有 5 种基础数据结构,它们分别是:string(字符串)、list(列表)、hash(字典)、set(集合) 和 zset(有序集合)。这 5 种是 Redis 相关知识中最基础、最重要的部分,下面我们结合源码以及一些实践来给大家分别讲解一下。
1)字符串 string
Redis 中的字符串是一种 动态字符串,这意味着使用者可以修改,它的底层实现有点类似于 Java 中的 ArrayList,有一个字符数组
- 注:Redis 规定了字符串的长度不得超过 512 MB。
对字符串的基本操作
设置和获取键值对
> SET key value
OK
> GET key
"value"
值可以是任何种类的字符串(包括二进制数据),例如你可以在一个键下保存一张 .jpeg
图片,只需要注意不要超过 512 MB 的最大限度就好了。
当 key 存在时,SET
命令会覆盖掉你上一次设置的值:
> SET key newValue
OK
> GET key
"newValue"
另外你还可以使用 EXISTS
和 DEL
关键字来查询是否存在和删除键值对:
> EXISTS key
(integer) 1
> DEL key
(integer) 1
> GET key
(nil)
批量设置键值对
> SET key1 value1
OK
> SET key2 value2
OK
> MGET key1 key2 key3 # 返回一个列表
1) "value1"
2) "value2"
3) (nil)
> MSET key1 value1 key2 value2
> MGET key1 key2
1) "value1"
2) "value2"
过期和 SET 命令扩展
可以对 key 设置过期时间,到时间会被自动删除,这个功能常用来控制缓存的失效时间。(过期可以是任意数据结构)
> SET key value1
> GET key
"value1"
> EXPIRE name 5 # 5s 后过期
... # 等待 5s
> GET key
(nil)
等价于 SET
+ EXPIRE
的 SETNX
命令:
> SETNX key value1
... # 等待 5s 后获取
> GET key
(nil)
> SETNX key value1 # 如果 key 不存在则 SET 成功
(integer) 1
> SETNX key value1 # 如果 key 存在则 SET 失败
(integer) 0
> GET key
"value" # 没有改变
计数
如果 value 是一个整数,还可以对它使用 INCR
命令进行 原子性 的自增操作,这意味着及时多个客户端对同一个 key 进行操作,也决不会导致竞争的情况:
> SET counter 100
> INCR count
(interger) 101
> INCRBY counter 50
(integer) 151
返回原值的 GETSET 命令
对字符串,还有一个 GETSET
比较让人觉得有意思,它的功能跟它名字一样:为 key 设置一个值并返回原值:
> SET key value
> GETSET key value1
"value"
这可以对于某一些需要隔一段时间就统计的 key 很方便的设置和查看,例如:系统每当由用户进入的时候你就是用 INCR
命令操作一个 key,当需要统计时候你就把这个 key 使用 GETSET
命令重新赋值为 0,这样就达到了统计的目的。
2)列表 list
Redis 的列表相当于 Java 语言中的 LinkedList,注意它是链表而不是数组。这意味着 list 的插入和删除操作非常快,时间复杂度为 O(1),但是索引定位很慢,时间复杂度为 O(n)。
链表的基本操作
LPUSH
和RPUSH
分别可以向 list 的左边(头部)和右边(尾部)添加一个新元素;LRANGE
命令可以从 list 中取出一定范围的元素;LINDEX
命令可以从 list 中取出指定下表的元素,相当于 Java 链表操作中的get(int index)
操作;
示范:
> rpush mylist A
(integer) 1
> rpush mylist B
(integer) 2
> lpush mylist first
(integer) 3
> lrange mylist 0 -1 # -1 表示倒数第一个元素, 这里表示从第一个元素到最后一个元素,即所有
1) "first"
2) "A"
3) "B"
list 实现队列
队列是先进先出的数据结构,常用于消息排队和异步逻辑处理,它会确保元素的访问顺序:
> RPUSH books python java golang
(integer) 3
> LPOP books
"python"
> LPOP books
"java"
> LPOP books
"golang"
> LPOP books
(nil)
list 实现栈
栈是先进后出的数据结构,跟队列正好相反:
> RPUSH books python java golang
> RPOP books
"golang"
> RPOP books
"java"
> RPOP books
"python"
> RPOP books
(nil)
3)字典 hash
Redis 中的字典相当于 Java 中的 HashMap,内部实现也差不多类似,都是通过 “数组 + 链表” 的链地址法来解决部分 哈希冲突,同时这样的结构也吸收了两种不同数据结构的优点。
具体实现为字典结构的内部包含两个 hashtable**,通常情况下只有一个 hashtable 是有值的,但是在字典扩容缩容时,需要分配新的 hashtable,然后进行 渐进式搬迁 (下面说原因)。
渐进式 rehash
大字典的扩容是比较耗时间的,需要重新申请新的数组,然后将旧字典所有链表中的元素重新挂接到新的数组下面,这是一个 O(n) 级别的操作,作为单线程的 Redis 很难承受这样耗时的过程,所以 Redis 使用 渐进式 rehash 小步搬迁:
渐进式 rehash 会在 rehash 的同时,保留新旧两个 hash 结构,如上图所示,查询时会同时查询两个 hash 结构,然后在后续的定时任务以及 hash 操作指令中,循序渐进的把旧字典的内容迁移到新字典中。当搬迁完成了,就会使用新的 hash 结构取而代之。
扩缩容的条件
正常情况下,当 hash 表中 元素的个数等于第一维数组的长度时,就会开始扩容,扩容的新数组是 原数组大小的 2 倍。不过如果 Redis 正在做 bgsave(持久化命令)
,为了减少内存也得过多分离,Redis 尽量不去扩容,但是如果 hash 表非常满了,达到了第一维数组长度的 5 倍了,这个时候就会 强制扩容。
当 hash 表因为元素逐渐被删除变得越来越稀疏时,Redis 会对 hash 表进行缩容来减少 hash 表的第一维数组空间占用。所用的条件是 元素个数低于数组长度的 10%,缩容不会考虑 Redis 是否在做 bgsave
。
字典的基本操作
hash 也有缺点,hash 结构的存储消耗要高于单个字符串,所以到底该使用 hash 还是字符串,需要根据实际情况再三权衡:
> HSET books java "think in java" # 命令行的字符串如果包含空格则需要使用引号包裹
(integer) 1
> HSET books python "python cookbook"
(integer) 1
> HGETALL books # key 和 value 间隔出现
1) "java"
2) "think in java"
3) "python"
4) "python cookbook"
> HGET books java
"think in java"
> HSET books java "head first java"
(integer) 0 # 因为是更新操作,所以返回 0
> HMSET books java "effetive java" python "learning python" # 批量操作
OK
4)集合 set
Redis 的集合相当于 Java 语言中的 HashSet,它内部的键值对是无序、唯一的。它的内部实现相当于一个特殊的字典,字典中所有的 value 都是一个值 NULL。
集合 set 的基本使用
由于该结构比较简单,我们直接来看看是如何使用的:
> SADD books java
(integer) 1
> SADD books java # 重复
(integer) 0
> SADD books python golang
(integer) 2
> SMEMBERS books # 注意顺序,set 是无序的
1) "java"
2) "python"
3) "golang"
> SISMEMBER books java # 查询某个 value 是否存在,相当于 contains
(integer) 1
> SCARD books # 获取长度
(integer) 3
> SPOP books # 弹出一个
"java"
5)有序列表 zset
这可能使 Redis 最具特色的一个数据结构了,它类似于 Java 中 SortedSet 和 HashMap 的结合体,一方面它是一个 set,保证了内部 value 的唯一性,另一方面它可以为每个 value 赋予一个 score 值,用来代表排序的权重。
它的内部实现用的是一种叫做 「跳跃表」 的数据结构。
跳跃表,最下面一层所有的元素都会串起来,然后每隔几个元素就会挑选出一个代表,再把这几个代表使用另外一级指针串起来。然后再在这些代表里面挑出二级代表,再串起来。最终形成了一个金字塔的结构。
想一下你目前所在的地理位置:亚洲 > 中国 > 某省 > 某市 > …,就是这样一个结构!
有序列表 zset 基础操作
> ZADD books 9.0 "think in java"
> ZADD books 8.9 "java concurrency"
> ZADD books 8.6 "java cookbook"
> ZRANGE books 0 -1 # 按 score 排序列出,参数区间为排名范围
1) "java cookbook"
2) "java concurrency"
3) "think in java"
> ZREVRANGE books 0 -1 # 按 score 逆序列出,参数区间为排名范围
1) "think in java"
2) "java concurrency"
3) "java cookbook"
> ZCARD books # 相当于 count()
(integer) 3
> ZSCORE books "java concurrency" # 获取指定 value 的 score
"8.9000000000000004" # 内部 score 使用 double 类型进行存储,所以存在小数点精度问题
> ZRANK books "java concurrency" # 排名
(integer) 1
> ZRANGEBYSCORE books 0 8.91 # 根据分值区间遍历 zset
1) "java cookbook"
2) "java concurrency"
> ZRANGEBYSCORE books -inf 8.91 withscores # 根据分值区间 (-∞, 8.91] 遍历 zset,同时返回分值。inf 代表 infinite,无穷大的意思。
1) "java cookbook"
2) "8.5999999999999996"
3) "java concurrency"
4) "8.9000000000000004"
> ZREM books "java concurrency" # 删除 value
(integer) 1
> ZRANGE books 0 -1
1) "java cookbook"
2) "think in java"
转载:https://blog.csdn.net/liuerchong/article/details/105284639