https://blog.51cto.com/11233559/2422351
1 总述
属性 | 含义 |
---|---|
__name__ | 类函数,方法等的名字 |
__module__ | 类定义所现在的模块名 |
__class__ | 对象或类所属的类 |
__bases__ | 类的基类的元素,顺序为他们在基类列表中出现的顺序 |
__doc__ | 类/函数的文档字符传,如果没有定义则为None |
__mro__ | 类的mro,class.mro()返回 |
__dict__ | 类或实例的属性,可写的字典 |
__dir__ | 返回了类或者对象所有成员列表,dir()函数调用的是_dir_(),如果提供了_dir_(),则返回属性列表,否则尽可能从__dict__属性中收集信息 |
name
获取类和函数的名字
class A:
pass
class B(A):
pass
def C():
pass
print (A.__name__,B.__name__,C.__name__,sep='\n')
module
类定义所在的模块名
#newtest.py
class A:
pass
class B:
pass
print (A.__module__,B.__module__)
#test1.py
import sys
n = __file__.split(r"/")
sys.path.append("/".join(n[:-2]))
import newtest
print(newtest.A.__module__)
class
对象或类所属的类
class A:
pass
class B(A):
pass
a=A()
b=B()
print (A.__class__,B.__class__,sep='\n') #类所属的类是class
print (a.__class__,b.__class__,sep='\n') # 对象所属的类是实实在在的类
bases
类的基类的元组,顺序是他们在基类列表中出现的顺序
class A:
pass
class B(A):
pass
class C(B):
pass
class E:
pass
class D(E,C):
pass
print (A.__bases__,B.__bases__,C.__bases__,D.__bases__,sep='\n')
DOC
文档字符串,针对类和函数有效,若不存在,则返回为None
class A:
'''this is class'''
pass
def B():
'''this is function'''
pass
class C:
pass
print (A.__doc__,B.__doc__,C.__doc__,sep='\n')
mro
类的mro。返回多继承中的查找顺序
class A:
pass
class B(A):
pass
class C(B):
pass
class E:
pass
class D(E,C):
pass
print (A.__mro__,B.__mro__,C.__mro__,D.__mro__,sep='\n')
dict
类或者实例的属性,可写的字典
class A:
a=10
def __init__(self,x):
self.x=5
a=A(3)
print (A.__dict__)
print (a.__dict__)
dir
dir 返回了类或者对象所有成员名称列表,dir()函数调用的是_dir_(),如果提供了_dir_() ,则返回属性的列表,否则会尽量从__dict__属性中收集
dir() 对于不同类型的对象具有不同的行为:
1 如果对象是模块对象,则列表包含模块的属性名
import re
def foo(x):
y=1
print (dir()) # 输出当前模块信息,此处会打印当前导入的模块和导入的函数
print ('='*20)
print (dir(re))
print ('='*20)
print (dir(foo))
2 如果对象是类型或者类对象,列表包含类的属性名,以及其他基类的属性名
class A:
a='1234'
def __init__(self):
pass
class B(A): # 此处调用父类,其dir中会包含父类的属性
pass
print (dir()) # 输出当前模块信息,此处会打印当前导入的模块和导入的函数
print ('='*20)
print (dir(A),dir(B),sep="\n"+'='*20+"\n") # 此中DIR属性父类和子类是完全相同的,但dict中却是不同的
print ('='*20)
print (A.__dict__,B.__dict__,sep="\n"+'='*20+"\n")
3 如果是对象,列表包含对象的属性名,它的类的属性名和基类的属性名
class A:
a='1234'
def __init__(self):
self.x=10
class B(A): # 此处调用父类,其dir中会包含父类的属性
pass
a=A()
print (dir()) # 输出当前模块信息,此处会打印当前导入的模块和导入的函数
print ('*'*40)
print (dir(A),dir(B),dir(a),sep="\n"+'='*20+"\n") #此处若是打印实例的属性,则会吧类的属性也打印上来
4此处对属性名进行了重写操作
class A:
a='1234'
def __init__(self):
self.x=10
class B(A): # 此处调用父类,其dir中会包含父类的属性
def __dir__(self): # 此处是针对实例设置的,和类本身并无关系
return ['this is class B '] # 此处是dir返回是列表,若使用字符串,则会处理成列表进行返回
a=A()
b=B()
print (dir()) # 输出当前模块信息,此处会打印当前导入的模块和导入的函数,以及实例后的对象
print ('*'*40)
print (dir(A),dir(B),dir(a),dir(b),sep="\n"+'='*20+"\n") #此处若是打印实例的属性,则会吧类的属性也打印上来
__slots__槽位
1 问题引出
都是字典惹的祸
字典为了提升查询效率,必须用空间换时间
一般来说一个对象,属性多一点,都存储在字典中便于查询,问题不大,但是数百万个对象,那么字典就占得有点大了,这个时候,python便提供了__slots__
魔术方法
描述 | 方法 |
---|---|
初始化和销毁 | __init__和__del__ |
在字典和set中使用 | __hash__ |
布尔类型,常用于判断语句 | __bool__ |
可视化,用于输出对应的类型 | __str__和__repr__ |
运算符重载 | __eq__,__ne__,__gt__,__lt__等 |
容器和大小相关和操作相关属性 | __getitem__,__setitem__等 |
可调用对象,将实例化的对象当成一个函数去调用,一旦可以当函数调用 | __call__ |
上下文管理(with open(x) as f 等形式 | __enter__,__exit__ |
反射 | __getattr__, __setattr__,__delattr__ |
描述器 | Object.__get__(self,instance,owner) Object.__set__(self,instance,value) Object.delete(self,instance) |
初始化和销毁
class X:
def __init__(self,name):
self.name=name
self.x=10
print ("init instance")
def __del__(self):
print ('delete {}'.format(self.name))
a=X('a')
del a
hash
1 简介
hash 中最基础的hash就是取模运算。
list 不能hash的原因
list 源码: 其中hash=None,在调用None的时候自然是不能hash的
bool
_bool_ 内建函数bool(), 或者对象放在逻辑表达式的位置,调用这个函数返回布尔值,没有定义_bool_,就找_len_ 返回长度,非0为真,如果__len__也没有定义,则所有的实例都返回是真。
class Point: # 此类未定义len和bool,因此其返回值为恒真
def __init__(self):
self.x=3
self.y=4
# def __bool__(self):
# return False
print (bool(Point()))
class Point:
def __init__(self):
self.x=3
self.y=4
def __bool__(self): # 此处定义了bool的返回值为False,则调用bool()返回结果应该为False
return False
print (bool(Point()))
class Point:
def __init__(self):
self.x=3
self.y=4
# def __bool__(self): # 此处定义了bool的返回值为False,则调用bool()返回结果应该为False
# return False
def __len__(self): # 此处用于当bool不存在时的找寻位置,为0则表示为空,则为False
return 0
print (bool(Point()))
class Point:
def __init__(self):
self.x=3
self.y=4
def __bool__(self): # 同时存在,则以bool为准
return False
def __len__(self):
return 1
print (bool(Point()))
这也就是为啥空的字典和空集合以及空列表为False的原因了,因为其没有定义bool,因此其只能通过访问len来实现了 。
可视化
1 简介
方法 | 意义 |
---|---|
_repr_ | 内建函数repr()对一个对象获取字符串表达式,如果一个类定义了_repr__但没有定义_str_, 那么在请求该类的实例的"非正式"的字符串也将调用_repr_() |
_str_ | str() 函数,内建函数format,print()函数调用,需要返回对象的字符串表达式 |
_bytes_ | bytes 的时候,返回一个独享的bytes表达,及返回bytes对象 |
class Point:
def __init__(self):
self.x=3
self.y=4
def __repr__(self):
return str([self.x,self.y]) #此处的返回必须使用字符串进行包裹,否则会报错
print (Point())
class Point:
def __init__(self):
self.x=3
self.y=4
def __repr__(self):
return str([self.x,self.y]) #此处的返回必须使用字符串进行包裹,否则会报错
def __str__(self): # 若存在此属性,则上述的表达式将不会被调用
return 'abcdefg'
print (Point())
class Point:
def __init__(self):
self.x=3
self.y=4
def __repr__(self):
return str([self.x,self.y]) #此处的返回必须使用字符串进行包裹,否则会报错
def __str__(self): # 若存在此属性,则上述的表达式将不会被调用
return 'abcdefg'
print (Point())
p1=Point()
p2=Point()
lst=[p1,p2]
for x in lst:
print (x)
print (lst)
class Point:
def __init__(self):
self.x=3
self.y=4
def __repr__(self):
return str([self.x,self.y]) #此处的返回必须使用字符串进行包裹,否则会报错
def __str__(self): # 若存在此属性,则上述的表达式将不会被调用
return 'abcdefg'
print (Point())
p1=Point()
p2=Point()
lst=(p1,p2)
for x in lst:
print (x)
print (lst)
print (*lst) #进行解包处理,此时是针对于对象上的,此时应该调用的是str
上述实例证明,当str和repr同时存在时,如果输出结果直接作用于对象上,则调用str方法,否则将调用repr方法
运算符重载
operator 模块提供以下的特殊方法,可以将类的实例使用下面操作符来进行操作
运算符 | 特殊方法 | 含义 |
---|---|---|
<,<=,==,>,>=,!= | _lt_,_le_,_eq_,_gt_,_ge_,_ne_ | 比较运算符 |
+,-,*,/,%,//,**,divmod | _add_,_sub_,_mul_,_truediv_,_mod_, _floordiv_,_pow_,_divmod_ |
算数运算符,移位,位运算也有对应的方法 |
+=,-=,*=,/=,%=,//=,**= | _iadd_,_isub_,_imul_,_itruediv_, _imod_,_ifloordiv_,_ipow_ |
class A:
def __init__(self,x):
self.x=x
def __lt__(self, other):
return self.x < other.x
def __eq__(self, other):
return self.x == other.x
def __ne__(self, other):
return self.x != other.x
def __sub__(self, other):
return self.x - other.x
print (A(10)<A(5))
print (A(10)==A(5))
print (A(10) != A(5))
print (A(10)-A(5))
运算符重载中的反向方法
class Add:
def __init__(self,x:int):
self.x=x
def __add__(self, other):
print ('add',self)
return self.x+other.x
def __iadd__(self, other):
print ('iadd',self)
return self.x+other.x
def __radd__(self, other):
print ('radd',self)
return self.x+other.x
class B:
def __init__(self,x):
self.x=x
a=Add(3)
b=B(4)
print (a+b)
print (b+a)
运算符重载的应用场景
往往是面向对象实现的类,需要做大量的运算,而运算符是这种运算在数学上最常见的表达方式,int 类中,几乎实现了所有操作符,可以作为参考
容器相关方法
内建方法 | 含义 |
---|---|
_len_ | 内建函数len(),返回对象的长度(>=0的整数),其实即使吧对象当作容器类型来看, 就如同list或dict,bool()函数调用的时候,如果没有_bool_()方法, 则会看_len_()方法是否存在,存在返回非0为真,第三方库中可能存在size,其和len的含义相同 |
_iter_ | 迭代器时,调用,返回一个新的迭代器对象 |
_contains_ | in成员运算符,没有实现,就调用__iter__方法遍历 |
_getitem_ | 实现self[key]访问,序列对象,key接受整数为索引,或者切片,对于set和dict,key为hashable,key不存在时引KeyError异常 |
_setitem_ | 和__getitem__的访问相似,是设置值的方法 |
_missing_ | 字典使用_getitem_()调用时,key不存在执行该方法 |
class Item:
def __init__(self,name,*args):
self.name=name
self.lst=list(args)
def __len__(self):
return len(self.lst)
def __iter__(self):
return iter(self.lst) # 此处返回是一个迭代器,必须是一个迭代器
def __add__(self, other): # 此处使用+ 号返回一个列表
self.lst.append(other)
return self
def __getitem__(self, index): # 此处应用于列表时,表示为索引,此处应用于字典时,表示key
if index > len(self.lst):
print ('Key Error')
else:
return self.lst[index]
def __setitem__(self, index, value): # 此处表示修改属性列表中的值
if index > len(self.lst):
print ('Key Error')
else:
self.lst[index]=value
return self
# def __missing__(self, key): # 此方法只能适用于字典的处理
# pass
def __repr__(self):
return str(self.lst) # 此处对其进行可视化处理
a=Item('mysql',12,3,45,678,8909)
print (len(a))
# 此处调用了__iter__方法
for i in a:
print (i)
print ('++++++++++++++++')
print (a[2]) # 此处调用了__getitem__方法,用于获取值
a+10 # 此处使用__add__方法进行加入,此处追加到列表的末尾
print (a[-1]) # 获取列表的最后一个元素,则得到此值
a[1]=20 # 使用__setitem__方法修改属性
print (a[1]) #返回对应位置的值
a+10+20+30+40 # 此处进行连加操作,因为其add方法返回是self,因此每次赋值后都会增加
print (a)
可调用对象
在python中一切皆对象,函数也不例外
可调用对象
方法
__call__类中出现该方法,实例就可以像函数一样调用,
可调用对象: 定义一个类,并实例化得到其实例,将实例像函数一样调用。调用是实例的,不是类的。
def foo():
print (foo.__module__,foo.__name__)
foo.__call__()# 此处的方法和下面的相同,皆是调用该函数
foo()
print (dir(foo))
函数的可调用原因是函数实现了\call()方法
def foo():
print (foo.__module__,foo.__name__)
print (foo.__call__) # 此处返回一个函数对象是一个wrapper
foo.__call__()# 此处的方法和下面的相同,皆是调用该函数
foo()
class A:
def __init__(self):
self.x=1
def __call__(self, *args): # 此处的第一个是self,表明其是给实例使用的,并不是给类使用的
return args # 此处返回一个元组
print (A()(12344)) # 此处第一个括号是实例化,第二个是传递参数并调用实例
练习
利用封装完成斐波那契额数列
方法1
class A:
def __call__(self,num):
a,b=0,1
for i in range(num):
print (b)
a,b=b,a+b
A()(10)
方法2
class A:
def __init__(self):
self.lst=[1,1,2]
def __call__(self,num):
if num < 3:
return self.lst[:num]
else:
for i in range(num-3):
self.lst.append(self.lst[-1]+self.lst[-2])
return self.lst
print (A()(10))
方法三
class A:
def __init__(self):
self.lst=[1,1,2]
def __len__(self):
return len(self.lst)
def __call__(self,x):
if len(self.lst) > x:
return self.lst[:x]
for i in range(2,x):
self.lst.append(self.lst[i]+self.lst[i-1])
return self.lst
def __getitem__(self, item):
if item < 0:
return None
if len(self) > item:
return self.lst[item]
def __iter__(self):
return iter(self.lst)
a=A()
print (a(10))
print (a[4])
for x in a:
print (x)
上下文管理
文件IO操作可以对文件对象进行上下文管理,使用with…as语法
class A:
pass
with A() as f:
pass
提示需要添加 __enter__属性
添加如下
class A:
def __enter__(self):
pass
with A() as f:
pass
提示需要添加 __exit__属性
class A:
def __enter__(self):
pass
def __exit__(self, exc_type, exc_val, exc_tb):
pass
with A() as f:
pass
class A:
def __enter__(self):
print ('__enter__')
def __exit__(self, exc_type, exc_val, exc_tb):
print ('__exit__')
with A() as f:
pass
由此图可知,其调用顺序是先调用_enter_,后调用_exit_
属性
方法 | 意义 |
---|---|
_enter_ | 进入于此对象相关的上下文,如果存在该方法,with语法会把该方法的返回值作为绑定到as字句中指定的变量上 |
_exit_ | 退出与此对象的上下文 |
exit 中变量的含义:
1 exc_type: 异常类型,如果没有异常,则返回是None
2 exc_tb:异常追踪信息,如果没有异常,则是None
3 exc_va :异常对应的值,如果没异常,则是None
此处的return 用于压制异常,若此处是False,则会抛出异常,等效True 或 False
缺少了enter 进不去,缺少了exitc出不来
class A:
def __init__(self):
print ('init instance')
def __enter__(self):
print ('__enter__')
return 1
def __exit__(self, exc_type, exc_val, exc_tb):
print ('__exit__')
p=A()
with p as f: # 此处的p是__enter__的返回值,是f的参数,若此处__enter__无return,则默认返回为None,无意义
print (p==f) # 此处用于比较p和f的关系
print (p is f)
print (p)
print (f)
上述结论如下:
实例化对象的时候,并不会调用enter,进入with语句块会调用__enter__方法,然后执行语句体,最后离开with语句块的时候,调用__exit__方法
with 可以开启一个上下文运行环境,在执行前做一些准备工作,执行后做一些收尾工作。
class A:
def __init__(self):
print ('init instance')
def __enter__(self):
print ('__enter__')
return 1
def __exit__(self, exc_type, exc_val, exc_tb):
print ('__exit__')
p=A()
with p as f: # 此处的p是__enter__的返回值,是f的参数,若此处__enter__无return,则默认返回为None,无意义
raise Exception('Error') # 此处抛出异常,一般的,抛出异常后,语句将不会再次执行
print (p==f) # 此处用于比较p和f的关系
print (p is f)
print (p)
print (f)
由此证明,当异常抛出时,exit对应的语句仍然会被执行。
当在上下文环境中直接退出会怎么样
import sys
class A:
def __init__(self):
print ('init instance')
def __enter__(self):
print ('__enter__')
return 1
def __exit__(self, exc_type, exc_val, exc_tb):
print ('__exit__')
p=A()
with p as f: # 此处的p是__enter__的返回值,是f的参数,若此处__enter__无return,则默认返回为None,无意义
sys.exit() # 此处的是直接退出
print (p==f) # 此处用于比较p和f的关系
print (p is f)
print (p)
print (f)
exit依然执行,此处满足上述清理工作,上下文管理非常安全,能够保证变量的顺利清除工作。
import sys
class A:
def __init__(self):
print ('init instance')
def __enter__(self):
print ('__enter__')
return self
def __exit__(self, exc_type, exc_val, exc_tb):
print ('__exit__')
print (exc_tb) #追踪信息
print (exc_type) # 类型
print (exc_val) # 值
return 1 # 此处设置为1 是压制异常,不让其出现
p=A()
with p as f: # 此处的p是__enter__的返回值,是f的参数,若此处__enter__无return,则默认返回为None,无意义
raise Exception('Error1234454')
print (p==f) # 此处用于比较p和f的关系
print (p is f)
print (p)
print (f)
通过此方法进行函数执行时长计算
之前的计算时长方式
import datetime
import time
import sys
def wapper(fn):
def _wapper(*args,**kwargs):
start_time=datetime.datetime.now()
ret = fn(*args,**kwargs)
delta=(datetime.datetime.now()-start_time).total_seconds()
print ("{} 函数的执行时间为: {}".format(fn.__name__,delta))
return ret
return _wapper
@wapper
def add(x,y):
time.sleep(2)
return x+y
add(4,5)
使用上下文管理的方式统计函数执行时间
import datetime
import time
class Timer:
def __init__(self,fn):
self.fn=fn
def __enter__(self):
self.start_time=datetime.datetime.now()
return self.fn # 此处对应的是as前面的值
def __exit__(self, exc_type, exc_val, exc_tb):
delat=(datetime.datetime.now()-self.start_time).total_seconds()
print ("函数{} 的执行时间为: {}".format(self.fn.__name__,delat))
return 1
def add(x,y):
return x+y
p=Timer(add)
with p as f: # 此处调用的是__enter__的返回值,重命名为f
time.sleep(2)
print (f(4,5))
类装饰器的应用
import datetime
import time
from functools import wraps
class A:
def __init__(self,fn):
self.fn=fn
def __call__(self,*args,**kwargs): #实例调用支持的方法
self.start_time=datetime.datetime.now()
ret = self.fn(*args,**kwargs)
delta=(datetime.datetime.now()-self.start_time).total_seconds()
print ("{} 函数的执行时间为: {}".format(self.fn.__name__,delta))
return ret
@A #add=A(add)
def add(x,y):
time.sleep(2)
return x+y
print (add(10,20))
进行属性覆盖如下
import datetime
import time
from functools import wraps
class A:
def __init__(self,fn):
self.fn=fn
def __call__(self,*args,**kwargs): #实例调用支持的方法
self.start_time=datetime.datetime.now()
ret = self.fn(*args,**kwargs)
delta=(datetime.datetime.now()-self.start_time).total_seconds()
print ("{} 函数的执行时间为: {}".format(self.fn.__name__,delta))
return ret
@A #add=A(add)
def add(x,y):
'''this is function'''
time.sleep(2)
return x+y
print (add(10,20))
print (add.__doc__) # 此处打印出文档
import datetime
import time
from functools import wraps
class A:
def __init__(self,fn):
self.__doc__=fn.__doc__ # 此处只能进行部分的属性覆盖操作
self.__name__=fn.__name__
self.fn=fn
def __call__(self,*args,**kwargs): #实例调用支持的方法
self.start_time=datetime.datetime.now()
ret = self.fn(*args,**kwargs)
delta=(datetime.datetime.now()-self.start_time).total_seconds()
print ("{} 函数的执行时间为: {}".format(self.fn.__name__,delta))
return ret
@A #add=A(add)
def add(x,y):
'''this is function'''
time.sleep(2)
return x+y
print (add(10,20))
print (add.__doc__) # 此处打印出文档
import datetime
import time
from functools import wraps
class A:
def __init__(self,fn):
wraps(fn)(self) # 调用此方法完成属性的覆盖操作,此处第一个是原函数,后面是现在的函数
self.fn=fn
def __call__(self,*args,**kwargs): #实例调用支持的方法
self.start_time=datetime.datetime.now()
ret = self.fn(*args,**kwargs)
delta=(datetime.datetime.now()-self.start_time).total_seconds()
print ("{} 函数的执行时间为: {}".format(self.fn.__name__,delta))
return ret
@A #add=A(add)
def add(x,y):
'''this is function'''
time.sleep(2)
return x+y
print (add(10,20))
print (add.__doc__) # 此处打印出文档
上下文的应用场景
1 增强功能
在代码执行的前后增加代码,以增强其功能,类似装饰器的功能
2 资源管理
打开了资源需要关闭,例如文件对象,网络链接,数据库链接等
3 权限验证
在执行代码之前,做权限的验证,在enter 中处理
在代码进入的时候进行处理,在权限出去则不管
转载:https://blog.csdn.net/qq_29983883/article/details/105982314