飞道的博客

利用pandas_udf加速机器学习任务

510人阅读  评论(0)

note

  • pandas udf和python udf区别:前者向量化是在不同partition上处理
  • @pandas_udf使用panda API来处理分布式数据集,而toPandas()将分布式数据集转换为本地数据,然后使用pandas进行处理,如果Pyspark的dataframe非常大,直接使用toPandas()很容易导致OOM。

一、Pyspark中的udf

1.1 udf的简单介绍

  • 在java分布式系统中执行python程序是挺耗性能的(如下图Pyspark多进程框架,数据在JVM和Python中进行传输,有额外的序列化和调用开销),apache arrow项目由此发起,以加速大数据分析项目运行速度。
  • apache arrow是一种内存中的列式数据格式,用于spark中JVM和python进程之间的数据高效传输。在调用Arrow之前,需要将spark配置选项设置为true:spark.conf.set("spark.sql.execution.arrow.enabled", "true"),但在spark3.0后的版本中需要改为spark.sql.execution.arrow.pyspark.enabled

  • udf自定义函数,可让我们在使用pyspark进行业务分析时高效自定义功能,一般分为两种:
    • event level:是对一条事件or数据进行计算
    • aggregation function: 对某个aggregation key的自定义聚合计算。如对pyspark中df使用collection_list或者collect_set把需要聚合的信息变成一个list后,通过event level的udf实现。
      • ex:计算用户多次登陆时间的最大值(如下代码)。
      • 上面栗子的缺点:如果主键是热点,即聚合出的元素很多,容易OOM,可只对聚合出的list先进行裁剪,如按照时间排序,保留最后topk的事件。
@udf(SomeType())
def find_max(lis):
  return max(lis)

SparkDataFrame.groupBy("userId"). \
     agg( 
        find_max(fn.collect_list('log_duration'))
    ).show()
  • 为什么 RDD filter() 方法那么慢呢?原因是 lambda 函数不能直接应用于驻留在 JVM 内存中的 DataFrame。
    • 内部实际发生的是 Spark 在集群节点上的 Spark 执行程序旁边启动 Python 工作线程。在执行时,Spark 工作器将 lambda 函数发送给这些 Python 工作器。接下来,Spark worker 开始序列化他们的 RDD 分区,并通过套接字将它们通过管道传输到 Python worker,lambda 函数在每行上进行评估。对于结果行,整个序列化/反序列化过程在再次发生,以便实际的 filter() 可以应用于结果集。
    • 因为数据来回复制过多,在分布式 Java 系统中执行 Python 函数在执行时间方面非常昂贵。这个底层的探索:只要避免Python UDF,PySpark 程序将大约与基于 Scala 的 Spark 程序一样快。如果无法避免 UDF,至少应该尝试使它们尽可能高效。

1.2 udf的写法

  • 写代码创建函数
  • 写一个单元测试
  • 保证测试通过,并且计算结果与业务实际需求相符
  • 将函数register到pyspark,注意必须声明函数返回值的数据类型(参考下表进行pyspark和python数据类型的对照)

1.3 udf的使用场景

在详细介绍对应的pandas_udf用法前先通过一张图看下在不同场合适合使用哪种udf:

上图源自《Data Analysis with Python and PySpark》。

具体而言:
(1)注册函数到spark:

from fractions import Fraction
from typing import Tuple, Optional

Frac = Tuple[int, int]


def py_reduce_fraction(frac: Frac) -> Optional[Frac]:
    """Reduce a fraction represented as a 2-tuple of integers."""
    num, denom = frac
    if denom:
        answer = Fraction(num, denom)
        return answer.numerator, answer.denominator
    return None


assert py_reduce_fraction((3, 6)) == (1, 2)
assert py_reduce_fraction((1, 0)) is None


def py_fraction_to_float(frac: Frac) -> Optional[float]:
    """Transforms a fraction represented as a 2-tuple of integers into a float."""
    num, denom = frac
    if denom:
        return num / denom
    return None


assert py_fraction_to_float((2, 8)) == 0.25
assert py_fraction_to_float((10, 0)) is None


SparkFrac = T.ArrayType(T.LongType())
reduce_fraction = F.udf(py_reduce_fraction, SparkFrac)

frac_df = frac_df.withColumn(
    "reduced_fraction", reduce_fraction(F.col("fraction"))
)
print("=====================udf test2:\n")
frac_df.show(5, False)
# +--------+----------------+
# |fraction|reduced_fraction|
# +--------+----------------+
# |[0, 1]  |[0, 1]          |
# |[0, 2]  |[0, 1]          |
# |[0, 3]  |[0, 1]          |
# |[0, 4]  |[0, 1]          |
# |[0, 5]  |[0, 1]          |
# +--------+----------------+
# only showing top 5 rows

 

(2)也可以使用decorator语法糖

@F.udf(T.DoubleType())
def fraction_to_float(frac: Frac) -> Optional[float]:
    """Transforms a fraction represented as a 2-tuple of integers into a float."""
    num, denom = frac
    if denom:
        return num / denom
    return None


frac_df = frac_df.withColumn(
    "fraction_float", fraction_to_float(F.col("reduced_fraction"))
)
print("================udf test 3:\n")
frac_df.select("reduced_fraction", "fraction_float").distinct().show(5, False)
# +----------------+-------------------+
# |reduced_fraction|fraction_float     |
# +----------------+-------------------+
# |[3, 50]         |0.06               |
# |[3, 67]         |0.04477611940298507|
# |[7, 76]         |0.09210526315789473|
# |[9, 23]         |0.391304347826087  |
# |[9, 25]         |0.36               |
# +----------------+-------------------+
# only showing top 5 rows
assert fraction_to_float.func((1, 2)) == 0.5

 

二、pandas_udf三大用法


第一个SCALAR和pandas中的transform类似,第二个GROUPED_MAP是最灵活的。

(1)Scalar向量化标量操作

  • 可以与select和withColumn等函数一起使用。python 函数应该以pandas.series作为输入,并返回一个长度相同的pandas.series
  • 在内部,spark 将通过将列拆分为batch,并将每个batch的函数作为数据的子集调用,然后将结果连接在一起,来执行 padas UDF。
  • Pandas_UDF是在PySpark 2.3版本中新增的API,Spark经过Arrow传输数据,使用Pandas处理数据。Pandas_UDF使用关键字pandas_udf做为装饰器或声明一个函数进行定义, Pandas_UDF包括Scalar(标量映射)和Grouped Map(分组映射)等类型。栗子:
from pyspark.sql.functions import pandas_udf,PandasUDFType
from pyspark.sql.types import IntegerType,StringType
slen=pandas_udf(lambda s:s.str.len(),IntegerType())
@pandas_udf(StringType())
def to_upper(s):
   return s.str.upper()

@pandas_udf(IntegerType(),PandasUDFType.SCALAR)
def add_one(x):
   return x+1

df = spark.createDataFrame([(1, "John Doe", 21)], ("id", "name", "age"))
df.select(slen("name").alias("slen(name)"), to_upper("name"), add_one("age")).show()
df.withColumn('slen(name)',slen("name")).show()
+----------+--------------+------------+
|slen(name)|to_upper(name)|add_one(age)|
+----------+--------------+------------+
|         8|      JOHN DOE|          22|
+----------+--------------+------------+

 

(2)Grouped Map

Grouped Map和后面的Grouped Aggregate都适合pyspark的split-apply-combine计算模式:

类似在pandaspandas.groupby().apply,pyspark中使用pandas_udf可以加速大数据的处理逻辑。如下面的例子:

from pyspark.sql.functions import pandas_udf,PandasUDFType

df3 = spark.createDataFrame(
[("a", 1, 0), ("a", -1, 42), ("b", 3, -1), ("b", 10, -2)],
("key", "value1", "value2")
)

from pyspark.sql.types import *

schema = StructType([
    StructField("key", StringType()),
    StructField("avg_value1", DoubleType()),
    StructField("avg_value2", DoubleType()),
    StructField("sum_avg", DoubleType()),
    StructField("sub_avg", DoubleType())
])

@pandas_udf(schema, functionType=PandasUDFType.GROUPED_MAP)
def g(df):
    gr = df['key'].iloc[0]
    x = df.value1.mean()
    y = df.value2.mean()
    w = df.value1.mean() + df.value2.mean()
    z = df.value1.mean() - df.value2.mean()
    return pd.DataFrame([[gr]+[x]+[y]+[w]+[z]])

df3.groupby("key").apply(g).show()
+---+----------+----------+-------+-------+
|key|avg_value1|avg_value2|sum_avg|sub_avg|
+---+----------+----------+-------+-------+
|  a|       0.0|      21.0|   21.0|  -21.0|
|  b|       6.5|      -1.5|    5.0|    8.0|
+---+----------+----------+-------+-------+

 

当然也不是一定要先对某个字段groupby操作,比如在直接导入torch训练好的模型参数(下面对最简单的linear线性模型举例),对一个很大的pyspark中dataframe进行使用pandas_udf预测:

from __future__ import print_function
from pyspark.sql import SparkSession
from pyspark import SparkConf, SparkContext
from pyspark.sql.functions import pandas_udf, PandasUDFType
import pyspark.sql.functions as F
from pyspark.sql.types import *
import pandas as pd
import torch
from torch import nn

class Linear(nn.Module):
    def __init__(self, input_dim, output_dim):
        super(Linear, self).__init__()
        self.linear = nn.Linear(input_dim, output_dim)

    def forward(self, x):  # 前向传播
        out = self.linear(x)  # 输入x,输出out
        return out


conf = SparkConf() \
  .setAppName("dataframe") \
  .set("spark.sql.execution.arrow.pyspark.enabled", "true")

spark = SparkSession.builder.config(conf=conf).getOrCreate()

@pandas_udf("uid long, aid long, score float", PandasUDFType.GROUPED_MAP)
def age_predict(df):
    linear = Linear(2, 1)
    linear.load_state_dict(torch.load('linear.pth'))
    linear.eval()
    df['score'] = linear(torch.from_numpy(df.values).type(torch.float32)).detach().numpy()
    return df.loc[:, ['uid', 'aid', 'score']]

df = spark.read.format("json").load("hdfs:///tmp/predict.json").repartition(2)

#此处的F.spark_partition_id()即为我的文件分区数量
res = df.groupby(F.spark_partition_id()).apply(age_predict)

 

(3)Grouped Aggregate

Grouped aggregate Panda UDF类似于Spark聚合函数。Grouped aggregate Panda UDF常常与groupBy().agg()pyspark.sql.window一起使用。它定义了来自一个或多个的聚合。级数到标量值,其中每个pandas.Series表示组或窗口中的一列。

【栗子】求每个id的平均值分数。

from pyspark.sql.functions import pandas_udf, PandasUDFType
df = spark.createDataFrame(
    [(1, 1.0), (1, 2.0), (2, 3.0), (2, 5.0), (2, 10.0)],("id", "v"))
@pandas_udf("double", PandasUDFType.GROUPED_AGG)  
def mean_udf(v):
     return v.mean()
df.groupby("id").agg(mean_udf(df['v'])).show() 

三、案例介绍

3.1 进行基础的数据计算

根据用户的活动结束时间和活动持续时间计算活动开始时间,其中通过pandas_udf对df中的每一行进行处理,返回处理结果。

import pandas as pd
from pyspark.sql.types import *
from pyspark.sql import SparkSession
from pyspark.sql.functions import pandas_udf, PandasUDFType
 
spark = SparkSession.builder.appName("demo3").config("spark.some.config.option", "some-value").getOrCreate()
df3 = spark.createDataFrame(
    [(18862669710, '/未知类型', 'IM传文件', 'QQ接收文件', 39.0, '2018-03-08 21:45:45', 178111558222, 1781115582),
     (18862669710, '/未知类型', 'IM传文件', 'QQ接收文件', 39.0, '2018-03-08 21:45:45', 178111558222, 1781115582),
     (18862228190, '/移动终端', '移动终端应用', '移动腾讯视频', 292.0, '2018-03-08 21:45:45', 178111558212, 1781115582),
     (18862669710, '/未知类型', '访问网站', '搜索引擎', 52.0, '2018-03-08 21:45:46', 178111558222, 1781115582)],
    ('online_account', 'terminal_type', 'action_type', 'app', 'access_seconds', 'datetime', 'outid', 'class'))
 
 
def compute(x):
    x['end_time'] = pd.to_datetime(x['datetime'], errors='coerce', format='%Y-%m-%d')
    x['end_time_convert_seconds'] = pd.to_timedelta(x['end_time']).dt.total_seconds().astype(int)
    x['start_time'] = pd.to_datetime(x['end_time_convert_seconds'] - x['access_seconds'], unit='s')
    x = x.sort_values(by=['start_time'], ascending=True)
    result = x[['online_account', 'terminal_type', 'action_type', 'app', 'access_seconds', 'datetime', 'outid', 'class','start_time', 'end_time']]
    return result
 
 
schema = StructType([
    StructField("online_account", LongType()),
    StructField("terminal_type", StringType()),
    StructField("action_type", StringType()),
    StructField("app", StringType()),
    StructField("access_seconds", DoubleType()),
    StructField("datetime", StringType()),
    StructField("outid", LongType()),
    StructField("class", LongType()),
    StructField("start_time", TimestampType()),
    StructField("end_time", TimestampType()),
 
])
 
 
@pandas_udf(schema, functionType=PandasUDFType.GROUPED_MAP)
def g(df):
    print('ok')
    mid = df.groupby(['online_account']).apply(lambda x: compute(x))
    result = pd.DataFrame(mid)
    return result
 
 
df3.printSchema()
aa = df3.groupby(['online_account']).apply(g)
aa.show()

 

3.2 高级用法:处理复杂类型数据列

基于高效对大df进行处理,可以to_json函数将所有复杂数据类型的列转为JSON字符串(Arrow可以便捷处理字符串),然后使用pandas_udf

import json
from functools import wraps
from pyspark.sql.functions import pandas_udf, PandasUDFType
import pandas as pd

class pandas_udf_ct(object):
    """Decorator for UDAFs with Spark >= 2.3 and complex types
    Args:
        returnType: the return type of the user-defined function. The value can be either a
                    pyspark.sql.types.DataType object or a DDL-formatted type string.
        functionType: an enum value in pyspark.sql.functions.PandasUDFType. Default: SCALAR.

    Returns:
        Function with arguments `cols_in` and `cols_out` defining column names having complex
        types that need to be transformed during input and output for GROUPED_MAP. In case of
        SCALAR, we are dealing with a series and thus transformation is done if `cols_in` or
        `cols_out` evaluates to `True`.
        Calling this functions with these arguments returns the actual UDF.
    """

    def __init__(self, returnType=None, functionType=None):
        self.return_type = returnType
        self.function_type = functionType

    def __call__(self, func):
        @wraps(func)
        def converter(*, cols_in=None, cols_out=None):
            if cols_in is None:
                cols_in = list()
            if cols_out is None:
                cols_out = list()

            @pandas_udf(self.return_type, self.function_type)
            def udf_wrapper(values):
                if isinstance(values, pd.DataFrame):
                    values = cols_from_json(values, cols_in)
                elif isinstance(values, pd.Series) and cols_in:
                    values = values.apply(json.loads)
                res = func(values)
                if self.function_type == PandasUDFType.GROUPED_MAP:
                    if isinstance(res, pd.Series):
                        res = res.to_frame().T
                    res = cols_to_json(res, cols_out)
                elif cols_out and self.function_type == PandasUDFType.SCALAR:
                    res = res.apply(ct_val_to_json)
                elif (isinstance(res, (dict, list)) and
                      self.function_type == PandasUDFType.GROUPED_AGG):
                    res = ct_val_to_json(res)
                return res

            return udf_wrapper

        return converter



from pyspark.sql.types import MapType, StructType, ArrayType, StructField
from pyspark.sql.functions import to_json, from_json

def is_complex_dtype(dtype):
    """Check if dtype is a complex type
    Args:
        dtype: Spark Datatype
    Returns:
        Bool: if dtype is complex
    """
    return isinstance(dtype, (MapType, StructType, ArrayType))

def complex_dtypes_to_json(df):
    """Converts all columns with complex dtypes to JSON
    Args:
        df: Spark dataframe
    Returns:
        tuple: Spark dataframe and dictionary of converted columns and their data types
    """
    conv_cols = dict()
    selects = list()
    for field in df.schema:
        if is_complex_dtype(field.dataType):
            conv_cols[field.name] = field.dataType
            selects.append(to_json(field.name).alias(field.name))
        else:
            selects.append(field.name)
    df = df.select(*selects)
    return df, conv_cols

def complex_dtypes_from_json(df, col_dtypes):
    """Converts JSON columns to complex types
    Args:
        df: Spark dataframe
        col_dtypes (dict): dictionary of columns names and their datatype
    Returns:
        Spark dataframe
    """
    selects = list()
    for column in df.columns:
        if column in col_dtypes.keys():
            schema = StructType([StructField('root', col_dtypes[column])])
            selects.append(from_json(column, schema).getItem('root').alias(column))
        else:
            selects.append(column)
    return df.select(*selects)

import json

def cols_from_json(df, columns):
    """Converts Pandas dataframe colums from json
    Args:
        df (dataframe): Pandas DataFrame
        columns (iter): list of or iterator over column names
    Returns:
        dataframe: new dataframe with converted columns
    """
    for column in columns:
        df[column] = df[column].apply(json.loads)
    return df

def ct_val_to_json(value):
    """Convert a scalar complex type value to JSON
    Args:
        value: map or list complex value
    Returns:
        str: JSON string
    """
    return json.dumps({
   'root': value})

def cols_to_json(df, columns):
    """Converts Pandas dataframe columns to json and adds root handle
    Args:
        df (dataframe): Pandas DataFrame
        columns ([str]): list of column names
    Returns:
        dataframe: new dataframe with converted columns
    """
    for column in columns:
        df[column] = df[column].apply(ct_val_to_json)
    return df


# 1. 构造数据集
from pyspark.sql.types import Row
from pyspark.sql import SparkSession

spark = SparkSession.builder.getOrCreate()
spark.conf.set("spark.sql.execution.arrow.enabled", "true")

df = spark.createDataFrame([(1., {
   'a': 1}, ["a", "a"], Row(a=1)),
                            (2., {
   'b': 1}, ["a", "b"], Row(a=42)),
                            (3., {
   'a': 1, 'b': 3}, ["d","e"], Row(a=1))],
                           schema=['vals', 'maps', 'lists', 'structs'])
df.show(), df.printSchema()


# 2. 定义处理过程 并且用装饰器
df_json, ct_cols = complex_dtypes_to_json(df)

def change_vals(dct):
    dct['x'] = 42
    return dct

@pandas_udf_ct(df_json.schema, PandasUDFType.GROUPED_MAP)
def normalize(pdf):
    pdf['maps'].apply(change_vals)
    return pdf


# 3. 使用定义的装饰器
df_json = df_json.groupby("vals").apply(normalize(cols_in=ct_cols, cols_out=ct_cols))
df_final = complex_dtypes_from_json(df_json, ct_cols)
print("================ test 8:\n")
df_final.show(truncate=False), df_final.printSchema()

 
  • 上面栗子中的需求:将值为42的键x添加到maps列中的字典中。步骤:
    • 使用 complex_dtypes_to_json 来获取转换后的 Spark 数据帧 df_json 和转换后的列 ct_cols
    • 然后定义 UDF 规范化并使用的 pandas_udf_ct 装饰它,使用 dfj_json.schema(因为只需要简单的数据类型)和函数类型 GROUPED_MAP 指定返回类型。
    • 其中初始的数据df和处理后的结果df如下所示。

只是为了演示,现在按 df_json 的 vals 列分组,并在每个组上应用的规范化 UDF。如前所述,必须首先使用参数 cols_in 和 cols_out 调用它,而不是仅仅传递 normalize。作为输入列,传递了来自 complex_dtypes_to_json 函数的输出 ct_cols,并且由于没有更改 UDF 中数据帧的形状,因此将其用于输出 cols_out。如果的 UDF 删除列或添加具有复杂数据类型的其他列,则必须相应地更改 cols_out。作为最后一步,使用 complex_dtypes_from_json 将转换后的 Spark 数据帧的 JSON 字符串转换回复杂数据类型。

# 初始df
+----+----------------+------+-------+
|vals|            maps| lists|structs|
+----+----------------+------+-------+
| 1.0|        {a -> 1}|[a, a]|    {1}|
| 2.0|        {b -> 1}|[a, b]|   {42}|
| 3.0|{a -> 1, b -> 3}|[d, e]|    {1}|
+----+----------------+------+-------+

root
 |-- vals: double (nullable = true)
 |-- maps: map (nullable = true)
 |    |-- key: string
 |    |-- value: long (valueContainsNull = true)
 |-- lists: array (nullable = true)
 |    |-- element: string (containsNull = true)
 |-- structs: struct (nullable = true)
 |    |-- a: long (nullable = true)

# 结果df
+----+-------------------------+------+-------+
|vals|maps                     |lists |structs|
+----+-------------------------+------+-------+
|1.0 |{a -> 1, x -> 42}        |[a, a]|{1}    |
|2.0 |{b -> 1, x -> 42}        |[a, b]|{42}   |
|3.0 |{a -> 1, b -> 3, x -> 42}|[d, e]|{1}    |
+----+-------------------------+------+-------+

root
 |-- vals: double (nullable = true)
 |-- maps: map (nullable = true)
 |    |-- key: string
 |    |-- value: long (valueContainsNull = true)
 |-- lists: array (nullable = true)
 |    |-- element: string (containsNull = true)
 |-- structs: struct (nullable = true)
 |    |-- a: long (nullable = true)

 

Reference

[1] 利用pyspark pandas_udf 加速机器学习任务
[2] Apache Spark+PyTorch 案例实战
[3] 官方文档pandas_udf介绍(带栗子)
[4] pandas_udf使用说明
[5] pyspark-03 UDF和Pandas_UDF
[6] 使用Pyspark的pandasUDF调用sklearn模型进行大规模预测
[7] spark部署TF、 Torch深度学习模型
[8] https://www.manning.com/books/data-analysis-with-python-and-pyspark
[9] PySpark中的自定义函数(UDF)
[10] pytoch+spark进行鲜花预测案例. databricks
[11] 在PySpark中对GroupedData应用UDF(带功能python示例)
[12] PySpark UD(A)F 的高效使用
[13] More Efficient UD(A)Fs with PySpark
[14] Efficient UD(A)Fs with PySpark
[15] pyspark pandas_udf. CSDN笔记
[16] PySpark Usage Guide for Pandas with Apache Arrow
[17] 使用Pandas_UDF快速改造Pandas代码
[18] PySpark Pandas UDF (pandas_udf) Example。 SparkByExample
[19] APACHE SPARK+PYTORCH 案例实战
[20] PySpark源码解析,用Python调用高效Scala接口,搞定大规模数据分析
[21] PySpark Or Pandas? Why Not Both:https://towardsdatascience.com/pyspark-or-pandas-why-not-both-95523946ec7c
[22] https://www.manning.com/books/data-analysis-with-python-and-pyspark
[23] pandas_udf使用说明.博客园


转载:https://blog.csdn.net/qq_35812205/article/details/128667136
查看评论
* 以上用户言论只代表其个人观点,不代表本网站的观点或立场