飞道的博客

【TypeScript】TS 看这一篇就够了

469人阅读  评论(0)

🧑‍💻TypeScript基本概念

TypeScript 是什么?

目标:能够说出什么是typescript

内容:

  • TypeScript 简称:TS,是 JavaScript 的超集,简单来说就是:JS 有的 TS 都有

  • TypeScript = Type + JavaScript(在 JS 基础之上,为 JS 添加了类型支持
  • TypeScript 是微软开发的开源编程语言,可以在任何运行 JavaScript 的地方运行

为什么要有typescript

目标:能够说出为什么需要有typescript

内容:

  • 背景:JS 的类型系统存在“先天缺陷”弱类型,JS 代码中绝大部分错误都是类型错误(Uncaught TypeError)
    • 开发的时候,定义的变量本应该就有类型
  • 这些经常出现的错误,导致了在使用 JS 进行项目开发时,增加了找 Bug、改 Bug 的时间,严重影响开发效率

为什么会这样? var num = 18 num.toLowerCase()

  • 从编程语言的动静来区分,TypeScript 属于静态类型的编程语言JavaScript 属于动态类型的编程语言

    • 静态类型:编译期做类型检查
    • 动态类型:执行期做类型检查
  • 代码编译和代码执行的顺序:1 编译 2 执行

  • 对于 JS 来说:需要等到代码真正去执行的时候才能发现错误(晚)

  • 对于 TS 来说:在代码编译的时候(代码执行前)就可以发现错误(早)

并且,配合 VSCode 等开发工具,TS 可以提前到在编写代码的同时就发现代码中的错误,减少找 Bug、改 Bug 时间

对比:

  • 使用 JS:
    1. 在 VSCode 里面写代码
    2. 在浏览器中运行代码 --> 运行时,才会发现错误【晚】
  • 使用 TS:
    1. 在 VSCode 里面写代码 --> 写代码的同时,就会发现错误【早】
    2. 在浏览器中运行代码

Vue 3 源码使用 TS 重写、Angular 默认支持 TS、React 与 TS 完美配合,TypeScript 已成为大中型前端 项目的首选编程语言

目前,前端最新的开发技术栈:

  1. React: TS + Hooks
  2. Vue: TS + Vue3
  • 注意: Vue2 对 TS 的支持不好~

安装编译 TS 的工具包

目标:能够安装ts的工具包来编译ts

内容:

  • 问题:为什么要安装编译 TS 的工具包?
  • 回答:Node.js/浏览器,只认识 JS 代码,不认识 TS 代码。需要先将 TS 代码转化为 JS 代码,然后才能运行
  • 安装命令:npm i -g typescript 或者 yarn global add typescript
    • typescript 包:用来编译 TS 代码的包,提供了 tsc 命令,实现了 TS -> JS 的转化
    • 注意:Mac 电脑安装全局包时,需要添加 sudo 获取权限:sudo npm i -g typescript yarn 全局安装:sudo yarn global add typescript
  • 验证是否安装成功:tsc –v(查看 typescript 的版本)

编译并运行 TS 代码

目标:能够理解typescript的运行步骤

内容:

  1. 创建 hello.ts 文件(注意:TS 文件的后缀名为 .ts
  2. 将 TS 编译为 JS:在终端中输入命令,tsc hello.ts(此时,在同级目录中会出现一个同名的 JS 文件)
  3. 执行 JS 代码:在终端中输入命令,node hello.js

1 创建 ts 文件 ===> 2 编译 TS ===> 3 执行 JS

  • 说明:所有合法的 JS 代码都是 TS 代码,有 JS 基础只需要学习 TS 的类型即可
  • 注意:由 TS 编译生成的 JS 文件,代码中就没有类型信息了

真正在开发过程中,其实不需要自己手动的通过tsc把ts文件转成js文件,这些工作应该交给webpack或者vite来完成

创建基于TS的vue项目

目标:能够使用vite创建vue-ts模板的项目

内容:

基于vite创建一个vue项目,使用typescript模板

yarn create vite vite-ts-demo  --template vue-ts

🧑‍💻TypeScript基础

类型注解

目标:能够理解什么是typescript的类型注解

内容:

  • TypeScript 是 JS 的超集,TS 提供了 JS 的所有功能,并且额外的增加了:类型系统
    • 所有的 JS 代码都是 TS 代码
    • JS 有类型(比如,number/string 等),但是 JS 不会检查变量的类型是否发生变化,而 TS 会检查
  • TypeScript 类型系统的主要优势:可以显示标记出代码中的意外行为,从而降低了发生错误的可能性

示例代码:

let age = 18

let age: number = 18
  • 说明:代码中的 : number 就是类型注解
  • 作用:为变量添加类型约束。比如,上述代码中,约定变量 age 的类型为 number 类型
  • 解释:约定了什么类型,就只能给变量赋值该类型的值,否则,就会报错
  • 约定了类型之后,代码的提示就会非常的清晰
  • 错误演示:
// 错误代码:
// 错误原因:将 string 类型的值赋值给了 number 类型的变量,类型不一致
let age: number = '18'

TypeScript类型概述

目标:能够理解TypeScript中有哪些数据类型

内容:

可以将 TS 中的常用基础类型细分为两类:

  • JS 已有类型

    • 原始类型,简单类型(number/string/boolean/null/undefined
    • 复杂数据类型(数组,对象,函数等)
  • TS 新增类型

    • 联合类型
    • 自定义类型(类型别名)
    • 接口
    • 元组
    • 字面量类型
    • 枚举
    • void

TypeScript原始数据类型

  • 原始类型:number/string/boolean/null/undefined
  • 特点:简单,这些类型,完全按照 JS 中类型的名称来书写
let age: number = 18
let myName: string = '老师'
let isLoading: boolean = false

// 等等...

数组类型

目标:掌握ts中数组类型的两种写法

内容:

  • 数组类型的两种写法:
    • 推荐使用 number[] 写法
// 写法一:
let numbers: number[] = [1, 3, 5]
// 写法二:
let strings: Array<string> = ['a', 'b', 'c']

联合类型

目标:能够通过联合类型将多个类型组合成一个类型

内容:

需求:数组中既有 number 类型,又有 string 类型,这个数组的类型应该如何写?

let arr: (number | string)[] = [1, 'a', 3, 'b']
  • 解释:|(竖线)在 TS 中叫做联合类型,即:由两个或多个其他类型组成的类型,表示可以是这些类型中的任意一种
  • 注意:这是 TS 中联合类型的语法,只有一根竖线,不要与 JS 中的或(|| 或)混淆了
  let timer: number | null = null
  timer = setInterval(() => {
   }, 1000)

  // 定义一个数组,数组中可以有数字或者字符串, 需要注意 | 的优先级
  let arr: (number | string)[] = [1, 'abc', 2]

类型别名

目标:能够使用类型别名给类型起别名

内容:

  • 类型别名(自定义类型):为任意类型起别名
  • 使用场景:当同一类型(复杂)被多次使用时,可以通过类型别名,简化该类型的使用
type CustomArray = (number | string)[]

let arr1: CustomArray = [1, 'a', 3, 'b']
let arr2: CustomArray = ['x', 'y', 6, 7]
  • 解释:
    1. 使用 type 关键字来创建自定义类型
    2. 类型别名(比如,此处的 CustomArray)可以是任意合法的变量名称
    3. 推荐使用大写字母开头
    4. 创建类型别名后,直接使用该类型别名作为变量的类型注解即可

函数类型

基本使用

目标:能够给函数指定类型

内容:

  • 函数的类型实际上指的是:函数参数返回值的类型
  • 为函数指定类型的两种方式:
    1. 单独指定参数、返回值的类型
    2. 同时指定参数、返回值的类型
  1. 单独指定参数、返回值的类型:
// 函数声明
function add(num1: number, num2: number): number {
   
  return num1 + num2
}

// 箭头函数
const add = (num1: number, num2: number): number => {
   
  return num1 + num2
}
  1. 同时指定参数、返回值的类型:
type AddFn = (num1: number, num2: number) => number

const add: AddFn = (num1, num2) => {
   
  return num1 + num2
}
  • 解释:当函数作为表达式时,可以通过类似箭头函数形式的语法来为函数添加类型
  • 注意:这种形式只适用于函数表达式

void 类型

目标:能够了解void类型的使用

内容:

  • 如果函数没有返回值,那么,函数返回值类型为:void
function greet(name: string): void {
   
  console.log('Hello', name)
}
  • 注意:
    • 如果一个函数没有返回值,此时,在 TS 的类型中,应该使用 void 类型
// 如果什么都不写,此时,add 函数的返回值类型为: void
const add = () => {
   }
// 这种写法是明确指定函数返回值类型为 void,与上面不指定返回值类型相同
const add = (): void => {
   }

// 但,如果指定 返回值类型为 undefined,此时,函数体中必须显示的 return undefined 才可以
const add = (): undefined => {
   
  // 此处,返回的 undefined 是 JS 中的一个值
  return undefined
}

可选参数

目标:能够使用?给函数指令可选参数类型

内容:

  • 使用函数实现某个功能时,参数可以传也可以不传。这种情况下,在给函数参数指定类型时,就用到可选参数
  • 比如,数组的 slice 方法,可以 slice() 也可以 slice(1) 还可以 slice(1, 3)
function mySlice(start?: number, end?: number): void {
   
  console.log('起始索引:', start, '结束索引:', end)
}
  • 可选参数:在可传可不传的参数名称后面添加 ?(问号)
  • 注意:可选参数只能出现在参数列表的最后,也就是说可选参数后面不能再出现必选参数

对象类型

基本使用

目标:掌握对象类型的基本使用

内容:

  • JS 中的对象是由属性和方法构成的,而 TS 对象的类型就是在描述对象的结构(有什么类型的属性和方法)
  • 对象类型的写法:
// 空对象
let person: {
   } = {
   }

// 有属性的对象
let person: {
    name: string } = {
   
  name: '同学'
}

// 既有属性又有方法的对象
// 在一行代码中指定对象的多个属性类型时,使用 `;`(分号)来分隔
let person: {
    name: string; sayHi(): void } = {
   
  name: 'jack',
  sayHi() {
   }
}

// 对象中如果有多个类型,可以换行写:
// 通过换行来分隔多个属性类型,可以去掉 `;`
let person: {
   
  name: string
  sayHi(): void
} = {
   
  name: 'jack',
  sayHi() {
   }
}


// 练习
指定学生的类型
姓名
性别
成绩
身高

学习
打游戏
  • 解释:
    1. 使用 {} 来描述对象结构
    2. 属性采用属性名: 类型的形式
    3. 方法采用方法名(): 返回值类型的形式

箭头函数形式的方法类型

  • 方法的类型也可以使用箭头函数形式
{
   
    greet(name: string):string,
    greet: (name: string) => string
}



type Person = {
   
  greet: (name: string) => void
  greet(name: string):void
}

let person: Person = {
   
  greet(name) {
   
    console.log(name)
  }
}

对象可选属性

  • 对象的属性或方法,也可以是可选的,此时就用到可选属性
  • 比如,我们在使用 axios({ ... }) 时,如果发送 GET 请求,method 属性就可以省略
  • 可选属性的语法与函数可选参数的语法一致,都使用 ? 来表示
type Config = {
   
  url: string
  method?: string
}

function myAxios(config: Config) {
   
  console.log(config)
}

使用类型别名

  • 注意:直接使用 {} 形式为对象添加类型,会降低代码的可读性(不好辨识类型和值)
  • 推荐:使用类型别名为对象添加类型
// 创建类型别名
type Person = {
   
  name: string
  sayHi(): void
}

// 使用类型别名作为对象的类型:
let person: Person = {
   
  name: 'jack',
  sayHi() {
   }
}

练习

创建两个对象:
学生对象

指定对象的类型
姓名
性别
成绩
身高

学习
打游戏

接口类型

基本使用

当一个对象类型被多次使用时,一般会使用接口(interface)来描述对象的类型,达到复用的目的

  • 解释:
    1. 使用 interface 关键字来声明接口
    2. 接口名称(比如,此处的 IPerson),可以是任意合法的变量名称,推荐以 I 开头
    3. 声明接口后,直接使用接口名称作为变量的类型
    4. 因为每一行只有一个属性类型,因此,属性类型后没有 ;(分号)
interface IPerson {
   
  name: string
  age: number
  sayHi(): void
}


let person: IPerson = {
   
  name: 'jack',
  age: 19,
  sayHi() {
   }
}

interface vs type

  • interface(接口)和 type(类型别名)的对比:
  • 相同点:都可以给对象指定类型
  • 不同点:
    • 接口,只能为对象指定类型
    • 类型别名,不仅可以为对象指定类型,实际上可以为任意类型指定别名
  • 推荐:能使用 type 就是用 type
interface IPerson {
   
  name: string
  age: number
  sayHi(): void
}

// 为对象类型创建类型别名
type IPerson = {
   
  name: string
  age: number
  sayHi(): void
}

// 为联合类型创建类型别名
type NumStr = number | string

接口继承

  • 如果两个接口之间有相同的属性或方法,可以将公共的属性或方法抽离出来,通过继承来实现复用
  • 比如,这两个接口都有 x、y 两个属性,重复写两次,可以,但很繁琐
interface Point2D {
    x: number; y: number }
interface Point3D {
    x: number; y: number; z: number }
  • 更好的方式:
interface Point2D {
    x: number; y: number }
// 继承 Point2D
interface Point3D extends Point2D {
   
  z: number
}
  • 解释:
    1. 使用 extends(继承)关键字实现了接口 Point3D 继承 Point2D
    2. 继承后,Point3D 就有了 Point2D 的所有属性和方法(此时,Point3D 同时有 x、y、z 三个属性)

元组类型

  • 场景:在地图中,使用经纬度坐标来标记位置信息
  • 可以使用数组来记录坐标,那么,该数组中只有两个元素,并且这两个元素都是数值类型
let position: number[] = [116.2317, 39.5427]
  • 使用 number[] 的缺点:不严谨,因为该类型的数组中可以出现任意多个数字
  • 更好的方式:元组 Tuple
  • 元组类型是另一种类型的数组,它确切地知道包含多少个元素,以及特定索引对应的类型
let position: [number, number] = [39.5427, 116.2317]
  • 解释:
    1. 元组类型可以确切地标记出有多少个元素,以及每个元素的类型
    2. 该示例中,元素有两个元素,每个元素的类型都是 number

类型推论

  • 在 TS 中,某些没有明确指出类型的地方,TS 的类型推论机制会帮助提供类型
  • 换句话说:由于类型推论的存在,这些地方,类型注解可以省略不写
  • 发生类型推论的 2 种常见场景:
    1. 声明变量并初始化时
    2. 决定函数返回值时
// 变量 age 的类型被自动推断为:number
let age = 18

// 函数返回值的类型被自动推断为:number
function add(num1: number, num2: number): number {
   
  return num1 + num2
}
  • 推荐:能省略类型注解的地方就省略偷懒,充分利用TS类型推论的能力,提升开发效率)
  • 技巧:如果不知道类型,可以通过鼠标放在变量名称上,利用 VSCode 的提示来查看类型

字面量类型

基本使用

  • 思考以下代码,两个变量的类型分别是什么?
let str1 = 'Hello TS'
const str2 = 'Hello TS'
  • 通过 TS 类型推论机制,可以得到答案:

    1. 变量 str1 的类型为:string
    2. 变量 str2 的类型为:‘Hello TS’
  • 解释:

  1. str1 是一个变量(let),它的值可以是任意字符串,所以类型为:string
  2. str2 是一个常量(const),它的值不能变化只能是 ‘Hello TS’,所以,它的类型为:‘Hello TS’
  • 注意:此处的 ‘Hello TS’,就是一个字面量类型,也就是说某个特定的字符串也可以作为 TS 中的类型
  • 任意的 JS 字面量(比如,对象、数字等)都可以作为类型使用
    • 字面量:{ name: 'jack' } [] 18 20 'abc' false function() {}

使用模式和场景

  • 使用模式:字面量类型配合联合类型一起使用
  • 使用场景:用来表示一组明确的可选值列表
  • 比如,在贪吃蛇游戏中,游戏的方向的可选值只能是上、下、左、右中的任意一个
// 使用自定义类型:
type Direction = 'up' | 'down' | 'left' | 'right'

function changeDirection(direction: Direction) {
   
  console.log(direction)
}

// 调用函数时,会有类型提示:
changeDirection('up')
  • 解释:参数 direction 的值只能是 up/down/left/right 中的任意一个
  • 优势:相比于 string 类型,使用字面量类型更加精确、严谨

枚举类型

基本使用

  • 枚举的功能类似于字面量类型+联合类型组合的功能,也可以表示一组明确的可选值
  • 枚举:定义一组命名常量。它描述一个值,该值可以是这些命名常量中的一个
// 创建枚举
enum Direction {
    Up, Down, Left, Right }

// 使用枚举类型
function changeDirection(direction: Direction) {
   
  console.log(direction)
}

// 调用函数时,需要应该传入:枚举 Direction 成员的任意一个
// 类似于 JS 中的对象,直接通过 点(.)语法 访问枚举的成员
changeDirection(Direction.Up)
  • 解释:
    1. 使用 enum 关键字定义枚举
    2. 约定枚举名称以大写字母开头
    3. 枚举中的多个值之间通过 ,(逗号)分隔
    4. 定义好枚举后,直接使用枚举名称作为类型注解

数字枚举

  • 问题:我们把枚举成员作为了函数的实参,它的值是什么呢?
  • 解释:通过将鼠标移入 Direction.Up,可以看到枚举成员 Up 的值为 0
  • 注意:枚举成员是有值的,默认为:从 0 开始自增的数值
  • 我们把,枚举成员的值为数字的枚举,称为:数字枚举
  • 当然,也可以给枚举中的成员初始化值
// Down -> 11、Left -> 12、Right -> 13
enum Direction {
    Up = 10, Down, Left, Right }

enum Direction {
    Up = 2, Down = 4, Left = 8, Right = 16 }

字符串枚举

  • 字符串枚举:枚举成员的值是字符串
  • 注意:字符串枚举没有自增长行为,因此,字符串枚举的每个成员必须有初始值
enum Direction {
   
  Up = 'UP',
  Down = 'DOWN',
  Left = 'LEFT',
  Right = 'RIGHT'
}

枚举实现原理

  • 枚举是 TS 为数不多的非 JavaScript 类型级扩展(不仅仅是类型)的特性之一
  • 因为:其他类型仅仅被当做类型,而枚举不仅用作类型,还提供值(枚举成员都是有值的)
  • 也就是说,其他的类型会在编译为 JS 代码时自动移除。但是,枚举类型会被编译为 JS 代码
enum Direction {
   
  Up = 'UP',
  Down = 'DOWN',
  Left = 'LEFT',
  Right = 'RIGHT'
}

// 会被编译为以下 JS 代码:
var Direction;

(function (Direction) {
   
  Direction['Up'] = 'UP'
  Direction['Down'] = 'DOWN'
  Direction['Left'] = 'LEFT'
  Direction['Right'] = 'RIGHT'
})(Direction || Direction = {
   })
  • 说明:枚举与前面讲到的字面量类型+联合类型组合的功能类似,都用来表示一组明确的可选值列表
  • 一般情况下,推荐使用字面量类型+联合类型组合的方式,因为相比枚举,这种方式更加直观、简洁、高效

any 类型

  • 原则:不推荐使用 any!这会让 TypeScript 变为 “AnyScript”(失去 TS 类型保护的优势)
  • 因为当值的类型为 any 时,可以对该值进行任意操作,并且不会有代码提示
let obj: any = {
    x: 0 }

obj.bar = 100
obj()
const n: number = obj
  • 解释:以上操作都不会有任何类型错误提示,即使可能存在错误
  • 尽可能的避免使用 any 类型,除非临时使用 any 来“避免”书写很长、很复杂的类型
  • 其他隐式具有 any 类型的情况
    1. 声明变量不提供类型也不提供默认值
    2. 函数参数不加类型
  • 注意:因为不推荐使用 any,所以,这两种情况下都应该提供类型

类型断言

有时候你会比 TS 更加明确一个值的类型,此时,可以使用类型断言来指定更具体的类型。 比如,

const aLink = document.getElementById('link')
  • 注意:该方法返回值的类型是 HTMLElement,该类型只包含所有标签公共的属性或方法,不包含 a 标签特有的 href 等属性
  • 因此,这个类型太宽泛(不具体),无法操作 href 等 a 标签特有的属性或方法
  • 解决方式:这种情况下就需要使用类型断言指定更加具体的类型
  • 使用类型断言:
const aLink = document.getElementById('link') as HTMLAnchorElement
  • 解释:

    1. 使用 as 关键字实现类型断言
    2. 关键字 as 后面的类型是一个更加具体的类型(HTMLAnchorElement 是 HTMLElement 的子类型)
    3. 通过类型断言,aLink 的类型变得更加具体,这样就可以访问 a 标签特有的属性或方法了
  • 另一种语法,使用 <> 语法,这种语法形式不常用知道即可:

// 该语法,知道即可:
const aLink = <HTMLAnchorElement>document.getElementById('link')

🧑‍💻TypeScript泛型

泛型-基本介绍

  • 泛型是可以在保证类型安全前提下,让函数等与多种类型一起工作,从而实现复用,常用于:函数、接口、class 中
  • 需求:创建一个 id 函数,传入什么数据就返回该数据本身(也就是说,参数和返回值类型相同)
function id(value: number): number {
    return value }
  • 比如,id(10) 调用以上函数就会直接返回 10 本身。但是,该函数只接收数值类型,无法用于其他类型
  • 为了能让函数能够接受任意类型,可以将参数类型修改为 any。但是,这样就失去了 TS 的类型保护,类型不安全
function id(value: any): any {
    return value }
  • 泛型在保证类型安全(不丢失类型信息)的同时,可以让函数等与多种不同的类型一起工作,灵活可复用
  • 实际上,在 C# 和 Java 等编程语言中,泛型都是用来实现可复用组件功能的主要工具之一

泛型-泛型函数

定义泛型函数

function id<Type>(value: Type): Type {
    return value }

function id<T>(value: T): T {
    return value }
  • 解释:
    1. 语法:在函数名称的后面添加 <>(尖括号),尖括号中添加类型变量,比如此处的 Type
    2. 类型变量 Type,是一种特殊类型的变量,它处理类型而不是值
    3. 该类型变量相当于一个类型容器,能够捕获用户提供的类型(具体是什么类型由用户调用该函数时指定)
    4. 因为 Type 是类型,因此可以将其作为函数参数和返回值的类型,表示参数和返回值具有相同的类型
    5. 类型变量 Type,可以是任意合法的变量名称

调用泛型函数

const num = id<number>(10)
const str = id<string>('a')
  • 解释:

    1. 语法:在函数名称的后面添加 <>(尖括号),尖括号中指定具体的类型,比如,此处的 number
    2. 当传入类型 number 后,这个类型就会被函数声明时指定的类型变量 Type 捕获到
    3. 此时,Type 的类型就是 number,所以,函数 id 参数和返回值的类型也都是 number
  • 同样,如果传入类型 string,函数 id 参数和返回值的类型就都是 string

  • 这样,通过泛型就做到了让 id 函数与多种不同的类型一起工作,实现了复用的同时保证了类型安全

简化泛型函数调用

// 省略 <number> 调用函数
let num = id(10)
let str = id('a')
  • 解释:

    1. 在调用泛型函数时,可以省略 <类型> 来简化泛型函数的调用
    2. 此时,TS 内部会采用一种叫做类型参数推断的机制,来根据传入的实参自动推断出类型变量 Type 的类型
    3. 比如,传入实参 10,TS 会自动推断出变量 num 的类型 number,并作为 Type 的类型
  • 推荐:使用这种简化的方式调用泛型函数,使代码更短,更易于阅读

  • 说明:当编译器无法推断类型或者推断的类型不准确时,就需要显式地传入类型参数

泛型约束

  • 默认情况下,泛型函数的类型变量 Type 可以代表多个类型,这导致无法访问任何属性
  • 比如,id(‘a’) 调用函数时获取参数的长度:
function id<Type>(value: Type): Type {
   
  console.log(value.length)
  return value
}

id('a')
  • 解释:Type 可以代表任意类型,无法保证一定存在 length 属性,比如 number 类型就没有 length
  • 此时,就需要为泛型添加约束来收缩类型(缩窄类型取值范围)
  • 添加泛型约束收缩类型,主要有以下两种方式:1 指定更加具体的类型 2 添加约束

指定更加具体的类型

比如,将类型修改为 Type[](Type 类型的数组),因为只要是数组就一定存在 length 属性,因此就可以访问了

function id<Type>(value: Type[]): Type[] {
   
  console.log(value.length)
  return value
}

添加约束

// 创建一个接口
interface ILength {
    length: number }

// Type extends ILength 添加泛型约束
// 解释:表示传入的 类型 必须满足 ILength 接口的要求才行,也就是得有一个 number 类型的 length 属性
function id<Type extends ILength>(value: Type): Type {
   
  console.log(value.length)
  return value
}
  • 解释:
    1. 创建描述约束的接口 ILength,该接口要求提供 length 属性
    2. 通过 extends 关键字使用该接口,为泛型(类型变量)添加约束
    3. 该约束表示:传入的类型必须具有 length 属性
  • 注意:传入的实参(比如,数组)只要有 length 属性即可(类型兼容性)

多个类型变量

泛型的类型变量可以有多个,并且类型变量之间还可以约束(比如,第二个类型变量受第一个类型变量约束)
比如,创建一个函数来获取对象中属性的值:

function getProp<Type, Key extends keyof Type>(obj: Type, key: Key) {
   
  return obj[key]
}
let person = {
    name: 'jack', age: 18 }
getProp(person, 'name')
  • 解释:
    1. 添加了第二个类型变量 Key,两个类型变量之间使用 , 逗号分隔。
    2. keyof 关键字接收一个对象类型,生成其键名称(可能是字符串或数字)的联合类型
    3. 本示例中 keyof Type 实际上获取的是 person 对象所有键的联合类型,也就是:'name' | 'age'
    4. 类型变量 Key 受 Type 约束,可以理解为:Key 只能是 Type 所有键中的任意一个,或者说只能访问对象中存在的属性
// Type extends object 表示: Type 应该是一个对象类型,如果不是 对象 类型,就会报错
// 如果要用到 对象 类型,应该用 object ,而不是 Object
function getProperty<Type extends object, Key extends keyof Type>(obj: Type, key: Key) {
   
  return obj[key]
}

泛型接口

泛型接口:接口也可以配合泛型来使用,以增加其灵活性,增强其复用性

interface IdFunc<Type> {
   
  id: (value: Type) => Type
  ids: () => Type[]
}

let obj: IdFunc<number> = {
   
  id(value) {
    return value },
  ids() {
    return [1, 3, 5] }
}
  • 解释:
    1. 在接口名称的后面添加 <类型变量>,那么,这个接口就变成了泛型接口。
    2. 接口的类型变量,对接口中所有其他成员可见,也就是接口中所有成员都可以使用类型变量
    3. 使用泛型接口时,需要显式指定具体的类型(比如,此处的 IdFunc)。
    4. 此时,id 方法的参数和返回值类型都是 number;ids 方法的返回值类型是 number[]。

JS 中的泛型接口

实际上,JS 中的数组在 TS 中就是一个泛型接口。

const strs = ['a', 'b', 'c']
// 鼠标放在 forEach 上查看类型
strs.forEach

const nums = [1, 3, 5]
// 鼠标放在 forEach 上查看类型
nums.forEach
  • 解释:当我们在使用数组时,TS 会根据数组的不同类型,来自动将类型变量设置为相应的类型
  • 技巧:可以通过 Ctrl + 鼠标左键(Mac:Command + 鼠标左键)来查看具体的类型信息

🧑‍💻TypeScript与Vue

参考链接:https://vuejs.org/guide/typescript/composition-api.html

vue3配合ts中,还需要额外安装一个vscode插件:Typescript Vue Plugin

defineProps与Typescript

目标:掌握defineProps如何配合ts使用

  1. defineProps配合vue默认语法进行类型校验(运行时声明)
// 运行时声明
defineProps({
   
  money: {
   
    type: Number,
    required: true
  },
  car: {
   
    type: String,
    required: true
  }
})
  1. defineProps配合ts的泛型定义props类型校验,这样更直接
// 使用ts的泛型指令props类型
defineProps<{
     
  money: number
  car?: string
}>()
  1. props可以通过解构来指定默认值
<script lang="ts" setup>
// 使用ts的泛型指令props类型
const {
    money, car = '小黄车' } = defineProps<{
     
  money: number
  car?: string
}>()
</script>

如果提供的默认值需要在模板中渲染,需要额外添加配置

https://vuejs.org/guide/extras/reactivity-transform.html#explicit-opt-in

// vite.config.js
export default {
   
  plugins: [
    vue({
   
      reactivityTransform: true
    })
  ]
}

defineEmits与Typescript

目标:掌握defineEmit如何配合ts使用

  1. defineEmits配合运行时声明
const emit = defineEmits(['change', 'update'])
  1. defineEmits配合ts 类型声明,可以实现更细粒度的校验
const emit = defineEmits<{
     
  (e: 'changeMoney', money: number): void
  (e: 'changeCar', car: string): void
}>()

ref与Typescript

目标:掌握ref配合ts如何使用

  1. 通过泛型指定value的值类型,如果是简单值,该类型可以省略
const money = ref<number>(10)

const money = ref(10)
  1. 如果是复杂类型,推荐指定泛型
type Todo = {
   
  id: number
  name: string
  done: boolean
}
const list = ref<Todo[]>([])

setTimeout(() => {
   
  list.value = [
    {
    id: 1, name: '吃饭', done: false },
    {
    id: 2, name: '睡觉', done: true }
  ]
})

reactive与Typescript

目标:掌握reactive配合typescript如何使用

// reactive 适合于明确属性的对象场景
type User = {
   
  name: string
  age: number
};
const obj: User = reactive({
   
  name: "zs",
  age: 18
});

computed与Typescript

目标:掌握computed配合typescript如何使用

  1. 通过泛型可以指定computed计算属性的类型,通常可以省略
const leftCount = computed<number>(() => {
   
  return list.value.filter((item) => item.done).length
})
console.log(leftCount.value)

事件处理与Typescript

目标:掌握事件处理函数配合typescript如何使用

const move = (e: MouseEvent) => {
   
  mouse.value.x = e.pageX
  mouse.value.y = e.pageY
}

<h1 @mousemove="move($event)">根组件</h1>

Template Ref与Typescript

目标:掌握ref操作DOM时如何配合Typescript使用

const imgRef = ref<HTMLImageElement | null>(null)

onMounted(() => {
   
  console.log(imgRef.value?.src)
})

如何查看一个DOM对象的类型:通过控制台进行查看

document.createElement('img').__proto__

可选链操作符

目标:掌握js中的提供的可选链操作符语法

内容

let nestedProp = obj.first?.second;
console.log(res.data?.data)
obj.fn?.()

if (obj.fn) {
   
    obj.fn()
}
obj.fn && obj.fn()

// 等价于
let temp = obj.first;
let nestedProp = ((temp === null || temp === undefined) ? undefined : temp.second);

非空断言

目标:掌握ts中的非空断言的使用语法

内容:

  • 如果我们明确的知道对象的属性一定不会为空,那么可以使用非空断言 !
// 告诉typescript, 明确的指定obj不可能为空
let nestedProp = obj!.second;
  • 注意:非空断言一定要确保有该属性才能使用,不然使用非空断言会导致bug

🧑‍💻TypeScript类型声明文件

基本介绍

今天几乎所有的 JavaScript 应用都会引入许多第三方库来完成任务需求。
这些第三方库不管是否是用 TS 编写的,最终都要编译成 JS 代码,才能发布给开发者使用。
我们知道是 TS 提供了类型,才有了代码提示和类型保护等机制。

但在项目开发中使用第三方库时,你会发现它们几乎都有相应的 TS 类型,这些类型是怎么来的呢? 类型声明文件

  • 类型声明文件:用来为已存在的 JS 库提供类型信息

  • TS 中有两种文件类型:1 .ts 文件 2 .d.ts 文件

  • .ts 文件:

  1. 既包含类型信息又可执行代码
  2. 可以被编译为 .js 文件,然后,执行代码
  3. 用途:编写程序代码的地方
  • .d.ts 文件:
  1. 只包含类型信息的类型声明文件
  2. 不会生成 .js 文件,仅用于提供类型信息,在.d.ts文件中不允许出现可执行的代码,只用于提供类型
  3. 用途:为 JS 提供类型信息
  • 总结:.ts 是 implementation(代码实现文件);.d.ts 是 declaration(类型声明文件)
  • 如果要为 JS 库提供类型信息,要使用 .d.ts 文件

内置类型声明文件

  • TS 为 JS 运行时可用的所有标准化内置 API 都提供了声明文件
  • 比如,在使用数组时,数组所有方法都会有相应的代码提示以及类型信息:
const strs = ['a', 'b', 'c']
// 鼠标放在 forEach 上查看类型
strs.forEach
  • 实际上这都是 TS 提供的内置类型声明文件
  • 可以通过 Ctrl + 鼠标左键(Mac:Command + 鼠标左键)来查看内置类型声明文件内容
  • 比如,查看 forEach 方法的类型声明,在 VSCode 中会自动跳转到 lib.es5.d.ts 类型声明文件中
  • 当然,像 window、document 等 BOM、DOM API 也都有相应的类型声明(lib.dom.d.ts)

第三方库类型声明文件

  • 目前,几乎所有常用的第三方库都有相应的类型声明文件
  • 第三方库的类型声明文件有两种存在形式:1 库自带类型声明文件 2 由 DefinitelyTyped 提供。
  1. 库自带类型声明文件:比如,axios
  • 查看 node_modules/axios 目录

解释:这种情况下,正常导入该库,TS 就会自动加载库自己的类型声明文件,以提供该库的类型声明。

  1. 由 DefinitelyTyped 提供
  • DefinitelyTyped 是一个 github 仓库,用来提供高质量 TypeScript 类型声明
  • DefinitelyTyped 链接
  • 可以通过 npm/yarn 来下载该仓库提供的 TS 类型声明包,这些包的名称格式为:@types/*
  • 比如,@types/react、@types/lodash 等
  • 说明:在实际项目开发时,如果你使用的第三方库没有自带的声明文件,VSCode 会给出明确的提示
import _ from 'lodash'

// 在 VSCode 中,查看 'lodash' 前面的提示
  • 解释:当安装 @types/* 类型声明包后,TS 也会自动加载该类声明包,以提供该库的类型声明
  • 补充:TS 官方文档提供了一个页面,可以来查询 @types/* 库
  • @types/* 库

自定义类型声明文件-共享数据

项目内共享类型

  • 如果多个 .ts 文件中都用到同一个类型,此时可以创建 .d.ts 文件提供该类型,实现类型共享。
// a.ts
import {
    Props } from './index'  //通过import导入
// type Props = { x: number; y: number }

let p1: Props = {
   
  x: 1,
  y: 2
}
// b.ts
import {
    Props } from './index'  //通过import导入
// type Props = { x: number; y: number } 

let p2: Props = {
   
  x: 12,
  y: 24
}
// index.d.ts
type Props = {
    x: number; y: number }
export {
    Props }  //创建需要共享的类型,并使用export导出
  • 操作步骤:
  1. 创建 index.d.ts 类型声明文件。
  2. 创建需要共享的类型,并使用 export 导出(TS 中的类型也可以使用 import/export 实现模块化功能)。
  3. 在需要使用共享类型的 .ts 文件中,通过 import 导入即可(.d.ts 后缀导入时,直接省略)。

自定义类型声明文件-为js提供声明

为已有 JS 文件提供类型声明

  1. 在将 JS 项目迁移到 TS 项目时,为了让已有的 .js 文件有类型声明。
  2. 成为库作者,创建库给其他人使用。
  • 演示:基于最新的 ESModule(import/export)来为已有 .js 文件,创建类型声明文件。

类型声明文件的使用说明

  • 说明:TS 项目中也可以使用 .js 文件。
  • 说明:在导入 .js 文件时,TS 会自动加载与 .js 同名的 .d.ts 文件,以提供类型声明。
  • declare 关键字:用于类型声明,为其他地方(比如,.js 文件)已存在的变量声明类型,而不是创建一个新的变量。
  1. 对于 type、interface 等这些明确就是 TS 类型的(只能在 TS 中使用的),可以省略 declare 关键字。
  2. 对于 let、function 等具有双重含义(在 JS、TS 中都能用),应该使用 declare 关键字,明确指定此处用于类型声明。
// index.ts文件
//导入.js文件时,自动加载.js文件的类型声明文件.d.ts,然后就能用到声明好的类型了
import {
    count, songName, add, Point} from './utils'

type Person = {
   
  name: string
  age: number
}

let p:Partial<Person> = {
   
  name: 'itpeilibo'
}

let p1: Point = {
   
  x: 10,
  y: 20
}
console.log('项目启动了')
console.log('count', count)
console.log('songName', songName)
console.log('add()', add(1, 4))

//utils.js文件
let count = 10
let songName = '巨人的小脚丫'
let position = {
   
  x: 0,
  y: 0
}

//函数声明形式
function add(x, y) {
   
  return x + y
}

function changeDirection(direction) {
   
  console.log(direction)
}

//函数表达式形式
const fomartPoint = point => {
   
  console.log('当前坐标:', point)
}

export {
    count, songName, position, add, changeDirection, fomartPoint }

定义类型声明文件

//utils.d.ts文件
//为utils.js文件来提供类型声明
declare let count:number //为已存在的变量声明类型

declare let songName: string

interface Position {
   
  x: number,
  y: number
}

declare let position: Position

declare function add (x :number, y: number) : number

type Direction = 'left' | 'right' | 'top' | 'bottom'

declare function changeDirection (direction: Direction): void
//自定义函数类型
type FomartPoint = (point: Position) => void

declare const fomartPoint: FomartPoint

export {
   
  count, songName, position, add, changeDirection, FomartPoint, fomartPoint
}

转载:https://blog.csdn.net/weixin_46862327/article/details/128895220
查看评论
* 以上用户言论只代表其个人观点,不代表本网站的观点或立场