1:行级锁
1.1:介绍
行级锁,每次操作锁住对应的行数据。锁定粒度最小,发生锁冲突的概率最低,并发度最高。应用在 InnoDB存储引擎中。 InnoDB的数据是基于索引组织的,行锁是通过对索引上的索引项加锁来实现的,而不是对记录加的 锁。对于行级锁,主要分为以下三类:
行锁(Record Lock):锁定单个行记录的锁,防止其他事务对此行进行update和delete。在 RC、RR隔离级别下都支持。
间隙锁(Gap Lock):锁定索引记录间隙(不含该记录),确保索引记录间隙不变,防止其他事 务在这个间隙进行insert,产生幻读。在RR隔离级别下都支持。
临键锁(Next-Key Lock):行锁和间隙锁组合,同时锁住数据,并锁住数据前面的间隙Gap。 在RR隔离级别下支持。
1.2:行锁
InnoDB实现了以下两种类型的行锁:
共享锁(S):允许一个事务去读一行,阻止其他事务获得相同数据集的排它锁。
排他锁(X):允许获取排他锁的事务更新数据,阻止其他事务获得相同数据集的共享锁和排他 锁。 两种行锁的兼容情况如下:
常见的SQL语句,在执行时,所加的行锁如下:
SQL |
行锁类型 |
说明 |
INSERT... |
排他锁 |
自动加锁 |
UPDATE ... |
排他锁 |
自动加锁 |
DELETE ... |
排他锁 |
自动加锁 |
SELECT(正常) |
不加任何 锁 |
|
SELECT ... LOCK IN SHARE MODE |
共享锁 |
需要手动在SELECT之后加LOCK IN SHARE MODE |
SELECT ... FOR UPDATE |
排他锁 |
需要手动在SELECT之后加FOR UPDATE |
2.演示
默认情况下,InnoDB在 REPEATABLE READ事务隔离级别运行,InnoDB使用 next-key 锁进行搜 索和索引扫描,以防止幻读。
针对唯一索引进行检索时,对已存在的记录进行等值匹配时,将会自动优化为行锁。
InnoDB的行锁是针对于索引加的锁,不通过索引条件检索数据,那么InnoDB将对表中的所有记 录加锁,此时 就会升级为表锁。
可以通过以下SQL,查看意向锁及行锁的加锁情况:
-
select object_schema,object_name,index_name,lock_type,lock_mode,lock_data
from
-
performance_schema.data_locks;
示例演示 数据准备:
-
CREATE
TABLE `stu` (
-
`id`
int
NOT
NULL
PRIMARY KEY AUTO_INCREMENT,
-
`name`
varchar(
255)
DEFAULT
NULL,
-
`age`
int
NOT
NULL
-
) ENGINE
= InnoDB
CHARACTER
SET
= utf8mb4;
-
INSERT
INTO `stu`
VALUES (
1,
'tom',
1);
-
INSERT
INTO `stu`
VALUES (
3,
'cat',
3);
-
INSERT
INTO `stu`
VALUES (
8,
'rose',
8);
-
INSERT
INTO `stu`
VALUES (
11,
'jetty',
11);
-
INSERT
INTO `stu`
VALUES (
19,
'lily',
19);
-
INSERT
INTO `stu`
VALUES (
25,
'luci',
25);
演示行锁的时候,我们就通过上面这张表来演示一下。 A. 普通的select语句,执行时,不会加锁。
B. select...lock in share mode,加共享锁,共享锁与共享锁之间兼容。
共享锁与排他锁之间互斥。
客户端一获取的是id为1这行的共享锁,客户端二是可以获取id为3这行的排它锁的,因为不是同一行 数据。 而如果客户端二想获取id为1这行的排他锁,会处于阻塞状态,以为共享锁与排他锁之间互 斥。
C. 排它锁与排他锁之间互斥
当客户端一,执行update语句,会为id为1的记录加排他锁; 客户端二,如果也执行update语句更 新id为1的数据,也要为id为1的数据加排他锁,但是客户端二会处于阻塞状态,因为排他锁之间是互 斥的。 直到客户端一,把事务提交了,才会把这一行的行锁释放,此时客户端二,解除阻塞。
stu表中数据如下:
我们在两个客户端中执行如下操作:
在客户端一中,开启事务,并执行update语句,更新name为Lily的数据,也就是id为19的记录 。 然后在客户端二中更新id为3的记录,却不能直接执行,会处于阻塞状态,为什么呢?
原因就是因为此时,客户端一,根据name字段进行更新时,name字段是没有索引的,如果没有索引, 此时行锁会升级为表锁(因为行锁是对索引项加的锁,而name没有索引)。
接下来,我们再针对name字段建立索引,索引建立之后,再次做一个测试:
此时我们可以看到,客户端一,开启事务,然后依然是根据name进行更新。而客户端二,在更新id为3 的数据时,更新成功,并未进入阻塞状态。 这样就说明,我们根据索引字段进行更新操作,就可以避 免行锁升级为表锁的情况。
1.3:间隙锁&临键锁
默认情况下,InnoDB在 REPEATABLE READ事务隔离级别运行,InnoDB使用 next-key 锁进行搜 索和索引扫描,以防止幻读。 1:索引上的等值查询(唯一索引),给不存在的记录加锁时, 优化为间隙锁 。 2:索引上的等值查询(非唯一普通索引),向右遍历时最后一个值不满足查询需求时,next-key lock 退化为间隙锁。 3:索引上的范围查询(唯一索引)--会访问到不满足条件的第一个值为止。
注意:间隙锁唯一目的是防止其他事务插入间隙。间隙锁可以共存,一个事务采用的间隙锁不会 阻止另一个事务在同一间隙上采用间隙锁。
示例演示 A. 索引上的等值查询(唯一索引),给不存在的记录加锁时, 优化为间隙锁 。
B. 索引上的等值查询(非唯一普通索引),向右遍历时最后一个值不满足查询需求时,next-key lock 退化为间隙锁。 介绍分析一下: 我们知道InnoDB的B+树索引,叶子节点是有序的双向链表。 假如,我们要根据这个二级索引查询值 为18的数据,并加上共享锁,我们是只锁定18这一行就可以了吗? 并不是,因为是非唯一索引,这个 结构中可能有多个18的存在,所以,在加锁时会继续往后找,找到一个不满足条件的值(当前案例中也 就是29)。此时会对18加临键锁,并对29之前的间隙加锁。
C. 索引上的范围查询(唯一索引)--会访问到不满足条件的第一个值为止。
查询的条件为id>=19,并添加共享锁。 此时我们可以根据数据库表中现有的数据,将数据分为三个部 分: [19] (19,25] (25,+∞]
所以数据库数据在加锁是,就是将19加了行锁,25的临键锁(包含25及25之前的间隙),正无穷的临 键锁(正无穷及之前的间隙)。
转载:https://blog.csdn.net/m0_64550837/article/details/128642146