飞道的博客

OpenVINO-yolov5推理代码

406人阅读  评论(0)


前言

  使用OpenVINO实现对yolov5s口罩模型推理,其他版本yolov5可以推广。本文只涉及推理代码的编写,并在不同设备上进行测试。电脑及设备信息如下:

  • CPU: CORE i7 10TH GEN
  • GPU: Intel® Iris® Plus Graphics
  • VPU: NCS2

一、OpenVINO2021.3代码

  github链接

#!/usr/bin/env python
"""
 Copyright (C) 2018-2019 Intel Corporation

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

      http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.
"""
from __future__ import print_function, division

import logging
import os
import sys
from argparse import ArgumentParser, SUPPRESS
from math import exp as exp
from time import time
import numpy as np

import cv2
from openvino.inference_engine import IENetwork, IECore

logging.basicConfig(format="[ %(levelname)s ] %(message)s", level=logging.INFO, stream=sys.stdout)
log = logging.getLogger()


def build_argparser():
    parser = ArgumentParser(add_help=False)
    args = parser.add_argument_group('Options')
    args.add_argument('-h', '--help', action='help', default=SUPPRESS, help='Show this help message and exit.')
    args.add_argument("-m", "--model", help="Required. Path to an .xml file with a trained model.",
                      required=True, type=str)
    args.add_argument("-i", "--input", help="Required. Path to an image/video file. (Specify 'cam' to work with "
                                            "camera)", required=True, type=str)
    args.add_argument("-l", "--cpu_extension",
                      help="Optional. Required for CPU custom layers. Absolute path to a shared library with "
                           "the kernels implementations.", type=str, default=None)
    args.add_argument("-d", "--device",
                      help="Optional. Specify the target device to infer on; CPU, GPU, FPGA, HDDL or MYRIAD is"
                           " acceptable. The sample will look for a suitable plugin for device specified. "
                           "Default value is CPU", default="CPU", type=str)
    args.add_argument("--labels", help="Optional. Labels mapping file", default=None, type=str)
    args.add_argument("-t", "--prob_threshold", help="Optional. Probability threshold for detections filtering",
                      default=0.5, type=float)
    args.add_argument("-iout", "--iou_threshold", help="Optional. Intersection over union threshold for overlapping "
                                                       "detections filtering", default=0.4, type=float)
    args.add_argument("-ni", "--number_iter", help="Optional. Number of inference iterations", default=1, type=int)
    args.add_argument("-pc", "--perf_counts", help="Optional. Report performance counters", default=False,
                      action="store_true")
    args.add_argument("-r", "--raw_output_message", help="Optional. Output inference results raw values showing",
                      default=False, action="store_true")
    args.add_argument("--no_show", help="Optional. Don't show output", action='store_true')
    return parser


class YoloParams:
    # ------------------------------------------- Extracting layer parameters ------------------------------------------
    # Magic numbers are copied from yolo samples
    def __init__(self,  side):
        self.num = 3 #if 'num' not in param else int(param['num'])
        self.coords = 4 #if 'coords' not in param else int(param['coords'])
        self.classes = 80 #if 'classes' not in param else int(param['classes'])
        self.side = side
        self.anchors = [10.0, 13.0, 16.0, 30.0, 33.0, 23.0, 30.0, 61.0, 62.0, 45.0, 59.0, 119.0, 116.0, 90.0, 156.0,
                        198.0,
                        373.0, 326.0] #if 'anchors' not in param else [float(a) for a in param['anchors'].split(',')]
    def log_params(self):
        params_to_print = {
   'classes': self.classes, 'num': self.num, 'coords': self.coords, 'anchors': self.anchors}
        [log.info("         {:8}: {}".format(param_name, param)) for param_name, param in params_to_print.items()]


def letterbox(img, size=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True):
    # Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
    shape = img.shape[:2]  # current shape [height, width]
    w, h = size

    # Scale ratio (new / old)
    r = min(h / shape[0], w / shape[1])
    if not scaleup:  # only scale down, do not scale up (for better test mAP)
        r = min(r, 1.0)

    # Compute padding
    ratio = r, r  # width, height ratios
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
    dw, dh = w - new_unpad[0], h - new_unpad[1]  # wh padding
    if auto:  # minimum rectangle
        dw, dh = np.mod(dw, 64), np.mod(dh, 64)  # wh padding
    elif scaleFill:  # stretch
        dw, dh = 0.0, 0.0
        new_unpad = (w, h)
        ratio = w / shape[1], h / shape[0]  # width, height ratios

    dw /= 2  # divide padding into 2 sides
    dh /= 2

    if shape[::-1] != new_unpad:  # resize
        img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
    img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border

    top2, bottom2, left2, right2 = 0, 0, 0, 0
    if img.shape[0] != h:
        top2 = (h - img.shape[0])//2
        bottom2 = top2
        img = cv2.copyMakeBorder(img, top2, bottom2, left2, right2, cv2.BORDER_CONSTANT, value=color)  # add border
    elif img.shape[1] != w:
        left2 = (w - img.shape[1])//2
        right2 = left2
        img = cv2.copyMakeBorder(img, top2, bottom2, left2, right2, cv2.BORDER_CONSTANT, value=color)  # add border
    return img

def scale_bbox(x, y, height, width, class_id, confidence, im_h, im_w, resized_im_h=640, resized_im_w=640):
    gain = min(resized_im_w / im_w, resized_im_h / im_h)  # gain  = old / new
    pad = (resized_im_w - im_w * gain) / 2, (resized_im_h - im_h * gain) / 2  # wh padding
    x = int((x - pad[0])/gain)
    y = int((y - pad[1])/gain)

    w = int(width/gain)
    h = int(height/gain)
 
    xmin = max(0, int(x - w / 2))
    ymin = max(0, int(y - h / 2))
    xmax = min(im_w, int(xmin + w))
    ymax = min(im_h, int(ymin + h))
    # Method item() used here to convert NumPy types to native types for compatibility with functions, which don't
    # support Numpy types (e.g., cv2.rectangle doesn't support int64 in color parameter)
    return dict(xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, class_id=class_id.item(), confidence=confidence.item())


def entry_index(side, coord, classes, location, entry):
    side_power_2 = side ** 2
    n = location // side_power_2
    loc = location % side_power_2
    return int(side_power_2 * (n * (coord + classes + 1) + entry) + loc)

def parse_yolo_region(blob, resized_image_shape, original_im_shape, params, threshold):
    # ------------------------------------------ Validating output parameters ------------------------------------------    
    out_blob_n, out_blob_c, out_blob_h, out_blob_w = blob.shape
    predictions = 1.0/(1.0+np.exp(-blob)) 
                   
    assert out_blob_w == out_blob_h, "Invalid size of output blob. It sould be in NCHW layout and height should " \
                                     "be equal to width. Current height = {}, current width = {}" \
                                     "".format(out_blob_h, out_blob_w)

    # ------------------------------------------ Extracting layer parameters -------------------------------------------
    orig_im_h, orig_im_w = original_im_shape
    resized_image_h, resized_image_w = resized_image_shape
    objects = list()
 
    side_square = params.side * params.side

    # ------------------------------------------- Parsing YOLO Region output -------------------------------------------
    bbox_size = int(out_blob_c/params.num) #4+1+num_classes

    for row, col, n in np.ndindex(params.side, params.side, params.num):
        bbox = predictions[0, n*bbox_size:(n+1)*bbox_size, row, col]
        
        x, y, width, height, object_probability = bbox[:5]
        class_probabilities = bbox[5:]
        if object_probability < threshold:
            continue
        x = (2*x - 0.5 + col)*(resized_image_w/out_blob_w)
        y = (2*y - 0.5 + row)*(resized_image_h/out_blob_h)
        if int(resized_image_w/out_blob_w) == 8 & int(resized_image_h/out_blob_h) == 8: #80x80, 
            idx = 0
        elif int(resized_image_w/out_blob_w) == 16 & int(resized_image_h/out_blob_h) == 16: #40x40
            idx = 1
        elif int(resized_image_w/out_blob_w) == 32 & int(resized_image_h/out_blob_h) == 32: # 20x20
            idx = 2

        width = (2*width)**2* params.anchors[idx * 6 + 2 * n]
        height = (2*height)**2 * params.anchors[idx * 6 + 2 * n + 1]
        class_id = np.argmax(class_probabilities)
        confidence = object_probability
        objects.append(scale_bbox(x=x, y=y, height=height, width=width, class_id=class_id, confidence=confidence,
                                  im_h=orig_im_h, im_w=orig_im_w, resized_im_h=resized_image_h, resized_im_w=resized_image_w))
    return objects

def intersection_over_union(box_1, box_2):
    width_of_overlap_area = min(box_1['xmax'], box_2['xmax']) - max(box_1['xmin'], box_2['xmin'])
    height_of_overlap_area = min(box_1['ymax'], box_2['ymax']) - max(box_1['ymin'], box_2['ymin'])
    if width_of_overlap_area < 0 or height_of_overlap_area < 0:
        area_of_overlap = 0
    else:
        area_of_overlap = width_of_overlap_area * height_of_overlap_area
    box_1_area = (box_1['ymax'] - box_1['ymin']) * (box_1['xmax'] - box_1['xmin'])
    box_2_area = (box_2['ymax'] - box_2['ymin']) * (box_2['xmax'] - box_2['xmin'])
    area_of_union = box_1_area + box_2_area - area_of_overlap
    if area_of_union == 0:
        return 0
    return area_of_overlap / area_of_union


def main():
    args = build_argparser().parse_args()
    # ------------- 1. Plugin initialization for specified device and load extensions library if specified -------------
    log.info("Creating Inference Engine...")
    ie = IECore()
    if args.cpu_extension and 'CPU' in args.device:
        ie.add_extension(args.cpu_extension, "CPU")

    # -------------------- 2. Reading the IR generated by the Model Optimizer (.xml and .bin files) --------------------
    model = args.model
    log.info(f"Loading network:\n\t{
     model}")
    net = ie.read_network(model=model)

    # ---------------------------------- 3. Load CPU extension for support specific layer ------------------------------

    assert len(net.input_info.keys()) == 1, "Sample supports only YOLO V3 based single input topologies"

    # ---------------------------------------------- 4. Preparing inputs -----------------------------------------------
    log.info("Preparing inputs")
    input_blob = next(iter(net.input_info))

    #  Defaulf batch_size is 1
    net.batch_size = 1

    # Read and pre-process input images
    n, c, h, w = net.input_info[input_blob].input_data.shape

    if args.labels:
        with open(args.labels, 'r') as f:
            labels_map = [x.strip() for x in f]
    else:
        labels_map = None

    input_stream = 0 if args.input == "cam" else args.input

    is_async_mode = True
    cap = cv2.VideoCapture(input_stream)
    number_input_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    number_input_frames = 1 if number_input_frames != -1 and number_input_frames < 0 else number_input_frames

    wait_key_code = 1

    # Number of frames in picture is 1 and this will be read in cycle. Sync mode is default value for this case
    if number_input_frames != 1:
        ret, frame = cap.read()
    else:
        is_async_mode = False
        wait_key_code = 0

    # ----------------------------------------- 5. Loading model to the plugin -----------------------------------------
    log.info("Loading model to the plugin")
    exec_net = ie.load_network(network=net, num_requests=2, device_name=args.device)

    cur_request_id = 0
    next_request_id = 1
    total_time = 0.0
    # ----------------------------------------------- 6. Doing inference -----------------------------------------------
    log.info("Starting inference...")
    print("To close the application, press 'CTRL+C' here or switch to the output window and press ESC key")
    print("To switch between sync/async modes, press TAB key in the output window")
    while cap.isOpened():
        start_time = time()
        # Here is the first asynchronous point: in the Async mode, we capture frame to populate the NEXT infer request
        # in the regular mode, we capture frame to the CURRENT infer request
        if is_async_mode:
            ret, next_frame = cap.read()
        else:
            ret, frame = cap.read()

        if not ret:
            break

        if is_async_mode:
            request_id = next_request_id
            in_frame = letterbox(frame, (w, h))
        else:
            request_id = cur_request_id
            in_frame = letterbox(frame, (w, h))
        # resize input_frame to network size
        in_frame = in_frame.transpose((2, 0, 1))  # Change data layout from HWC to CHW
        in_frame = in_frame.reshape((n, c, h, w))

        # Start inference
        exec_net.start_async(request_id=request_id, inputs={
   input_blob: in_frame})
        # Collecting object detection results
        objects = list()
        if exec_net.requests[cur_request_id].wait(-1) == 0:
            output = exec_net.requests[cur_request_id].output_blobs
            start_time = time()
            for layer_name, out_blob in output.items():
                layer_params = YoloParams(side=out_blob.buffer.shape[2])
                log.info("Layer {} parameters: ".format(layer_name))
                layer_params.log_params()
                objects += parse_yolo_region(out_blob.buffer, in_frame.shape[2:],
                                             #in_frame.shape[2:], layer_params,
                                             frame.shape[:-1], layer_params,
                                             args.prob_threshold)
        # Filtering overlapping boxes with respect to the --iou_threshold CLI parameter
        objects = sorted(objects, key=lambda obj : obj['confidence'], reverse=True)
        for i in range(len(objects)):
            if objects[i]['confidence'] == 0:
                continue
            for j in range(i + 1, len(objects)):
                if intersection_over_union(objects[i], objects[j]) > args.iou_threshold:
                    objects[j]['confidence'] = 0

        # Drawing objects with respect to the --prob_threshold CLI parameter
        objects = [obj for obj in objects if obj['confidence'] >= args.prob_threshold]

        if len(objects) and args.raw_output_message:
            log.info("\nDetected boxes for batch {}:".format(1))
            log.info(" Class ID | Confidence | XMIN | YMIN | XMAX | YMAX | COLOR ")

        origin_im_size = frame.shape[:-1]
        print(origin_im_size)
        for obj in objects:
            # Validation bbox of detected object
            if obj['xmax'] > origin_im_size[1] or obj['ymax'] > origin_im_size[0] or obj['xmin'] < 0 or obj['ymin'] < 0:
                continue
            # print("id:",obj['class_id'])
            color = ()
            if (obj['class_id'] == 0):
                color = (0, 0, 255)
            elif (obj['class_id'] == 1):
                color = (0, 255, 0)
            else:
                continue
            det_label = labels_map[obj['class_id']] if labels_map and len(labels_map) >= obj['class_id'] else \
                str(obj['class_id'])
            if args.raw_output_message:
                log.info(
                    "{:^9} | {:10f} | {:4} | {:4} | {:4} | {:4} | {} ".format(det_label, obj['confidence'], obj['xmin'],
                                                                              obj['ymin'], obj['xmax'], obj['ymax'],
                                                                              color))
            cv2.rectangle(frame, (obj['xmin'], obj['ymin']), (obj['xmax'], obj['ymax']), color, 4)
            cv2.putText(frame,
                         det_label + ' ' + str(round(obj['confidence'] * 100, 1)) + ' %',
                        (obj['xmin'], obj['ymin'] - 7), cv2.FONT_HERSHEY_COMPLEX, 0.6, color, 2)
            stop_time = time()
            total_time = stop_time - start_time
        # Draw performance stats over frame
        total_time_message = "Total time: {:.3f} ms".format(total_time * 1e3)
        cv2.putText(frame, total_time_message, (15, 15), cv2.FONT_HERSHEY_COMPLEX, 0.5, (0, 0, 255), 1)
        if not args.no_show:
            cv2.imshow("DetectionResults", frame)
        if is_async_mode:
            cur_request_id, next_request_id = next_request_id, cur_request_id
            frame = next_frame

        if not args.no_show:
            key = cv2.waitKey(wait_key_code)
    
            # ESC key
            if key == 27:
                break
    cv2.destroyAllWindows()
if __name__ == '__main__':
    sys.exit(main() or 0)

 

二、OpenVINO2022.3代码

  以下代码是根据OpenVINO2022.3 API与以上github代码而改动,测试有效

#!/usr/bin/env python
"""
Author: CaiGui Lin
Date:2023-1-6
Description: OpenVINO2022.3 yolov5 mask detection Async Mode
"""
from __future__ import print_function, division

import logging
import os
import sys
from argparse import ArgumentParser, SUPPRESS
from math import exp as exp
from time import time
import numpy as np

import cv2
from openvino.runtime import Core
import openvino.runtime as ov
logging.basicConfig(format="[ %(levelname)s ] %(message)s", level=logging.INFO, stream=sys.stdout)
log = logging.getLogger()


def build_argparser():
    parser = ArgumentParser(add_help=False)
    args = parser.add_argument_group('Options')
    args.add_argument('-h', '--help', action='help', default=SUPPRESS, help='Show this help message and exit.')
    args.add_argument("-m", "--model", help="Required. Path to an .xml file with a trained model.",
                      required=True, type=str)
    args.add_argument("-i", "--input", help="Required. Path to an image/video file. (Specify 'cam' to work with "
                                            "camera)", required=True, type=str)
    args.add_argument("-l", "--cpu_extension",
                      help="Optional. Required for CPU custom layers. Absolute path to a shared library with "
                           "the kernels implementations.", type=str, default=None)
    args.add_argument("-d", "--device",
                      help="Optional. Specify the target device to infer on; CPU, GPU, FPGA, HDDL or MYRIAD is"
                           " acceptable. The sample will look for a suitable plugin for device specified. "
                           "Default value is CPU", default="CPU", type=str)
    args.add_argument("--labels", help="Optional. Labels mapping file", default=None, type=str)
    args.add_argument("-t", "--prob_threshold", help="Optional. Probability threshold for detections filtering",
                      default=0.5, type=float)
    args.add_argument("-iout", "--iou_threshold", help="Optional. Intersection over union threshold for overlapping "
                                                       "detections filtering", default=0.4, type=float)
    args.add_argument("-ni", "--number_iter", help="Optional. Number of inference iterations", default=1, type=int)
    args.add_argument("-pc", "--perf_counts", help="Optional. Report performance counters", default=False,
                      action="store_true")
    args.add_argument("-r", "--raw_output_message", help="Optional. Output inference results raw values showing",
                      default=False, action="store_true")
    args.add_argument("--no_show", help="Optional. Don't show output", action='store_true')
    return parser


class YoloParams:
    # ------------------------------------------- Extracting layer parameters ------------------------------------------
    # Magic numbers are copied from yolo samples
    def __init__(self,  side):
        self.num = 3 #if 'num' not in param else int(param['num'])
        self.coords = 4 #if 'coords' not in param else int(param['coords'])
        self.classes = 80 #if 'classes' not in param else int(param['classes'])
        self.side = side
        self.anchors = [10.0, 13.0, 16.0, 30.0, 33.0, 23.0, 30.0, 61.0, 62.0, 45.0, 59.0, 119.0, 116.0, 90.0, 156.0,
                        198.0,
                        373.0, 326.0] #if 'anchors' not in param else [float(a) for a in param['anchors'].split(',')]

    def log_params(self):
        params_to_print = {
   'classes': self.classes, 'num': self.num, 'coords': self.coords, 'anchors': self.anchors}
        [log.info("         {:8}: {}".format(param_name, param)) for param_name, param in params_to_print.items()]


def letterbox(img, size=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True):
    # Resize image to a 32-pixel-multiple rectangle https://github.com/ultralytics/yolov3/issues/232
    shape = img.shape[:2]  # current shape [height, width]
    w, h = size

    # Scale ratio (new / old)
    r = min(h / shape[0], w / shape[1])
    if not scaleup:  # only scale down, do not scale up (for better test mAP)
        r = min(r, 1.0)

    # Compute padding
    ratio = r, r  # width, height ratios
    new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
    dw, dh = w - new_unpad[0], h - new_unpad[1]  # wh padding
    if auto:  # minimum rectangle
        dw, dh = np.mod(dw, 64), np.mod(dh, 64)  # wh padding
    elif scaleFill:  # stretch
        dw, dh = 0.0, 0.0
        new_unpad = (w, h)
        ratio = w / shape[1], h / shape[0]  # width, height ratios

    dw /= 2  # divide padding into 2 sides
    dh /= 2

    if shape[::-1] != new_unpad:  # resize
        img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
    top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
    left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
    img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)  # add border

    top2, bottom2, left2, right2 = 0, 0, 0, 0
    if img.shape[0] != h:
        top2 = (h - img.shape[0])//2
        bottom2 = top2
        img = cv2.copyMakeBorder(img, top2, bottom2, left2, right2, cv2.BORDER_CONSTANT, value=color)  # add border
    elif img.shape[1] != w:
        left2 = (w - img.shape[1])//2
        right2 = left2
        img = cv2.copyMakeBorder(img, top2, bottom2, left2, right2, cv2.BORDER_CONSTANT, value=color)  # add border
    return img


def scale_bbox(x, y, height, width, class_id, confidence, im_h, im_w, resized_im_h=640, resized_im_w=640):
    gain = min(resized_im_w / im_w, resized_im_h / im_h)  # gain  = old / new
    pad = (resized_im_w - im_w * gain) / 2, (resized_im_h - im_h * gain) / 2  # wh padding
    x = int((x - pad[0])/gain)
    y = int((y - pad[1])/gain)

    w = int(width/gain)
    h = int(height/gain)
 
    xmin = max(0, int(x - w / 2))
    ymin = max(0, int(y - h / 2))
    xmax = min(im_w, int(xmin + w))
    ymax = min(im_h, int(ymin + h))
    # Method item() used here to convert NumPy types to native types for compatibility with functions, which don't
    # support Numpy types (e.g., cv2.rectangle doesn't support int64 in color parameter)
    return dict(xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, class_id=class_id.item(), confidence=confidence.item())


def entry_index(side, coord, classes, location, entry):
    side_power_2 = side ** 2
    n = location // side_power_2
    loc = location % side_power_2
    return int(side_power_2 * (n * (coord + classes + 1) + entry) + loc)


def parse_yolo_region(blob, resized_image_shape, original_im_shape, params, threshold):
    # ------------------------------------------ Validating output parameters ------------------------------------------    
    out_blob_n, out_blob_c, out_blob_h, out_blob_w = blob.shape
    predictions = 1.0/(1.0+np.exp(-blob)) 
                   
    assert out_blob_w == out_blob_h, "Invalid size of output blob. It sould be in NCHW layout and height should " \
                                     "be equal to width. Current height = {}, current width = {}" \
                                     "".format(out_blob_h, out_blob_w)

    # ------------------------------------------ Extracting layer parameters -------------------------------------------
    orig_im_h, orig_im_w = original_im_shape
    resized_image_h, resized_image_w = resized_image_shape
    objects = list()
 
    side_square = params.side * params.side

    # ------------------------------------------- Parsing YOLO Region output -------------------------------------------
    bbox_size = int(out_blob_c/params.num) #4+1+num_classes

    for row, col, n in np.ndindex(params.side, params.side, params.num):
        bbox = predictions[0, n*bbox_size:(n+1)*bbox_size, row, col]
        
        x, y, width, height, object_probability = bbox[:5]
        class_probabilities = bbox[5:]
        if object_probability < threshold:
            continue
        x = (2*x - 0.5 + col)*(resized_image_w/out_blob_w)
        y = (2*y - 0.5 + row)*(resized_image_h/out_blob_h)
        if int(resized_image_w/out_blob_w) == 8 & int(resized_image_h/out_blob_h) == 8: #80x80, 
            idx = 0
        elif int(resized_image_w/out_blob_w) == 16 & int(resized_image_h/out_blob_h) == 16: #40x40
            idx = 1
        elif int(resized_image_w/out_blob_w) == 32 & int(resized_image_h/out_blob_h) == 32: # 20x20
            idx = 2

        width = (2*width)**2* params.anchors[idx * 6 + 2 * n]
        height = (2*height)**2 * params.anchors[idx * 6 + 2 * n + 1]
        class_id = np.argmax(class_probabilities)
        confidence = object_probability
        objects.append(scale_bbox(x=x, y=y, height=height, width=width, class_id=class_id, confidence=confidence,
                                  im_h=orig_im_h, im_w=orig_im_w, resized_im_h=resized_image_h, resized_im_w=resized_image_w))
    return objects


def intersection_over_union(box_1, box_2):
    width_of_overlap_area = min(box_1['xmax'], box_2['xmax']) - max(box_1['xmin'], box_2['xmin'])
    height_of_overlap_area = min(box_1['ymax'], box_2['ymax']) - max(box_1['ymin'], box_2['ymin'])
    if width_of_overlap_area < 0 or height_of_overlap_area < 0:
        area_of_overlap = 0
    else:
        area_of_overlap = width_of_overlap_area * height_of_overlap_area
    box_1_area = (box_1['ymax'] - box_1['ymin']) * (box_1['xmax'] - box_1['xmin'])
    box_2_area = (box_2['ymax'] - box_2['ymin']) * (box_2['xmax'] - box_2['xmin'])
    area_of_union = box_1_area + box_2_area - area_of_overlap
    if area_of_union == 0:
        return 0
    return area_of_overlap / area_of_union


def main():
    args = build_argparser().parse_args()
    ie = Core()
    # -------------------- 1. Reading the IR generated by the Model Optimizer (.xml and .bin files) --------------------
    model = args.model
    net = ie.read_model(model=model)
    # ------------- 2. Loading model to the plugin, set device(CPU、GPU、VPU、FPGA) -------------
    compiled_model = ie.compile_model(model=net, device_name=args.device)
    # ------------- 3. Get input layer and output layer -------------
    input_layer = net.input(0)
    output_layer = net.output(0)
    # Get shape of input layer
    n, c, h, w = input_layer.shape
    # Get labels
    if args.labels:
        with open(args.labels, 'r') as f:
            labels_map = [x.strip() for x in f]
    else:
        labels_map = None
    # input type 
    input_stream = 0 if args.input == "cam" else args.input

    cap = cv2.VideoCapture(input_stream)
    number_input_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    number_input_frames = 1 if number_input_frames != -1 and number_input_frames < 0 else number_input_frames

    wait_key_code = 1

    # Number of frames in picture is 1 and this will be read in cycle. Sync mode is default value for this case
    if number_input_frames != 1:
        ret, frame = cap.read()
    # request
    curr_request = compiled_model.create_infer_request()
    next_request = compiled_model.create_infer_request()
     # ---------------------------------------------- 4. Preparing inputs -----------------------------------------------
    in_frame = letterbox(frame, (w, h)).astype(np.float32)
    in_frame = in_frame.transpose((2, 0, 1))  # Change data layout from HWC to CHW
    in_frame = in_frame.reshape((n, c, h, w))
    curr_request.set_tensor(input_layer, ov.Tensor(in_frame))
    curr_request.start_async()

    # ----------------------------------------------- 5. Doing inference -----------------------------------------------
    while cap.isOpened():
        # Start capture
        start_time = time()
        ret, next_frame = cap.read()
        if not ret:
            break
        in_frame = letterbox(next_frame, (w, h)).astype(np.float32)
        in_frame = in_frame.transpose((2, 0, 1))  # Change data layout from HWC to CHW
        in_frame = in_frame.reshape((n, c, h, w))
        next_request.set_tensor(input_layer, ov.Tensor(in_frame))
        next_request.start_async()
        total_time = 0.0
        # Collecting object detection results
        objects = list()
        if curr_request.wait_for(-1) == 1:
            output = curr_request.get_output_tensor(output_layer.index).data
            
            layer_params = YoloParams(side=output.shape[2])
            # log.info("Layer {} parameters: ".format(layer_name))
            layer_params.log_params()
            objects += parse_yolo_region(output, in_frame.shape[2:],
                                            #in_frame.shape[2:], layer_params,
                                            frame.shape[:-1], layer_params,
                                            args.prob_threshold)
        # Filtering overlapping boxes with respect to the --iou_threshold CLI parameter
        objects = sorted(objects, key=lambda obj : obj['confidence'], reverse=True)
        for i in range(len(objects)):
            if objects[i]['confidence'] == 0:
                continue
            for j in range(i + 1, len(objects)):
                if intersection_over_union(objects[i], objects[j]) > args.iou_threshold:
                    objects[j]['confidence'] = 0

        # Drawing objects with respect to the --prob_threshold CLI parameter
        objects = [obj for obj in objects if obj['confidence'] >= args.prob_threshold]

        if len(objects) and args.raw_output_message:
            log.info("\nDetected boxes for batch {}:".format(1))
            log.info(" Class ID | Confidence | XMIN | YMIN | XMAX | YMAX | COLOR ")

        origin_im_size = frame.shape[:-1]
        for obj in objects:
            # Validation bbox of detected object
            if obj['xmax'] > origin_im_size[1] or obj['ymax'] > origin_im_size[0] or obj['xmin'] < 0 or obj['ymin'] < 0:
                continue
            # color
            color = ()
            if (obj['class_id'] == 0):
                color = (0, 0, 255)
            elif (obj['class_id'] == 1):
                color = (0, 255, 0)
            else:
                continue

            det_label = labels_map[obj['class_id']] if labels_map and len(labels_map) >= obj['class_id'] else \
                str(obj['class_id'])

            if args.raw_output_message:
                log.info(
                    "{:^9} | {:10f} | {:4} | {:4} | {:4} | {:4} | {} ".format(det_label, obj['confidence'], obj['xmin'],
                                                                              obj['ymin'], obj['xmax'], obj['ymax'],
                                                                              color))

            cv2.rectangle(frame, (obj['xmin'], obj['ymin']), (obj['xmax'], obj['ymax']), color, 4)
            cv2.putText(frame,
                         det_label + ' ' + str(round(obj['confidence'] * 100, 1)) + ' %',
                        (obj['xmin'], obj['ymin'] - 7), cv2.FONT_HERSHEY_COMPLEX, 0.6, color, 2)
            stop_time = time()
            total_time = stop_time - start_time
        # # Draw performance stats over frame
        total_time_message = "Total time: {:.3f} ms".format(total_time * 1e3)
        cv2.putText(frame, total_time_message, (15, 15), cv2.FONT_HERSHEY_COMPLEX, 0.5, (0, 0, 255), 1)
        if not args.no_show:
            cv2.imshow("DetectionResults", frame)
        frame = next_frame
        curr_request, next_request = next_request, curr_request
        if not args.no_show:
            key = cv2.waitKey(wait_key_code)
            # ESC key
            if key == 27:
                break
    cv2.destroyAllWindows()

if __name__ == '__main__':
    sys.exit(main() or 0)

 

三、结果展示

  1. No OpenVINO视频演示

No OpenVINO

  1. CPU视频演示

CPU

  1. GPU视频演示

GPU

  1. VPU视频演示

VPU

总结

  演示结果显示,OpenVINO nice!


转载:https://blog.csdn.net/weixin_43828944/article/details/128581351
查看评论
* 以上用户言论只代表其个人观点,不代表本网站的观点或立场