飞道的博客

回归预测 | MATLAB实现SSA-BiLSTM麻雀算法优化双向长短期记忆神经网络多输入单输出

410人阅读  评论(0)

回归预测 | MATLAB实现SSA-BiLSTM麻雀算法优化双向长短期记忆神经网络多输入单输出

预测效果




基本介绍

麻雀搜索算法(Sparrow Search Algorithm, SSA)是于2020年提出的。SSA 主要是受麻雀的觅食行为和反捕食行为的启发而提出的。该算法比较新颖,具有寻优能力强,收敛速度快的优点。建立麻雀搜索算法的数学模型,主要规则如下所述:
(1)发现者通常拥有较高的能源储备并且在整个种群中负责搜索到具有丰富食物的区域,为所有的加入者提供觅食的区域和方向。在模型建立中能量储备的高低取决于麻雀个体所对应的适应度值(Fitness Value)的好坏。
(2)一旦麻雀发现了捕食者,个体开始发出鸣叫作为报警信号。当报警值大于安全值时,发现者会将加入者带到其它安全区域进行觅食。
(3)发现者和加入者的身份是动态变化的。只要能够寻找到更好的食物来源,每只麻雀都可以成为发现者,但是发现者和加入者所占整个种群数量的比重是不变的。也就是说,有一只麻雀变成发现者必然有另一只麻雀变成加入者。
(4)加入者的能量越低,它们在整个种群中所处的觅食位置就越差。一些饥肠辘辘的加入者更有可能飞往其它地方觅食,以获得更多的能量。
(5)在觅食过程中,加入者总是能够搜索到提供最好食物的发现者,然后从最好的食物中获取食物或者在该发现者周围觅食。与此同时,一些加入者为了增加自己的捕食率可能会不断地监控发现者进而去争夺食物资源。
(6)当意识到危险时,群体边缘的麻雀会迅速向安全区域移动,以获得更好的位置,位于种群中间的麻雀则会随机走动,以靠近其它麻雀。
Bi-LSTM 神经网络结构模型分为 2 个独立的LSTM,输入序列分别以正序和逆序输入至 2 个LSTM 神经网络进行特征提取,将 2个输出向量(即提取后的特征向量)进行拼接后形成的词向量作为该词的最终特征表达。Bi-LSTM 的模型设计理念是使 t 时刻所获得特征数据同时拥有过去和将来之间的信息,实验证明,这种神经网络结构模型对文本特征提取效率和性能要优于单个 LSTM 结构模型。

程序设计

%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
clc;clear;close all;format compact
%%
data =xlsread('data.xlsx','sheet1','A2:H104');
x=data(:,1:7);
y=data(:,8);
method=@mapminmax;%归一化
% method=@mapstd;%标准化
[xs,mappingx]=method(x');x=xs';
[ys,mappingy]=method(y');y=ys';
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%划分数据
n=size(x,1);
m=round(n*0.7);%70%训练 后30%测试
XTrain=x(1:m,:)';
XTest=x(m+1:end,:)';
YTrain=y(1:m,:)';
YTest=y(m+1:end,:)';
%% 采用ssa优化
[x ,fit_gen,process]=ssaforbilstm(XTrain,YTrain,XTest,YTest);%分别对隐含层节点 训练次数与学习率寻优
%% 参数设置
pop=5; % 种群数
M=20; % 最大迭代次数
dim=4;%一共有4个参数需要优化
lb=[1   1   1  0.001];%分别对两个隐含层节点 训练次数与学习率寻优
ub=[100 100 50  0.01];%这个分别代表4个参数的上下界,比如第一个参数的范围就是1-100
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
layers = [ ...
    sequenceInputLayer(numFeatures)
    bilstmLayer(numHiddenUnits)
    fullyConnectedLayer(numResponses)
    regressionLayer];
options = trainingOptions('adam', ...
    'MaxEpochs',250, ...
    'GradientThreshold',1, ...
    'InitialLearnRate',0.005, ...
    'LearnRateSchedule','piecewise', ...
    'LearnRateDropPeriod',125, ...
    'LearnRateDropFactor',0.2, ...
    'ExecutionEnvironment','cpu', ...
    'Verbose',0, ...
    'Plots','training-progress');
%-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------   
net = trainNetwork(XTrain,YTrain,layers,options);
dataTestStandardized = (dataTest - mu) / sig;
XTest = dataTestStandardized(1:end-1);
net = predictAndUpdateState(net,XTrain);
[net,YPred] = predictAndUpdateState(net,YTrain(end));
numTimeStepsTest = numel(XTest);

 

参考资料

[1] https://blog.csdn.net/article/details/126072792?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/article/details/126044265?spm=1001.2014.3001.5502
[3] https://blog.csdn.net/article/details/126043107?spm=1001.2014.3001.5502


转载:https://blog.csdn.net/kjm13182345320/article/details/128348437
查看评论
* 以上用户言论只代表其个人观点,不代表本网站的观点或立场