飞道的博客

潘多拉 IOT 开发板学习(RT-Thread)—— 实验2 RGB LED 实验(学习笔记)

410人阅读  评论(0)

本文代码参考 RT-Thread 官方 BSP

实验功能

例程源码:(main.c)

该实验实现了 RGB 灯 8 种状态的切换,切换间隔为 500 ms。

/*
 * Copyright (c) 2006-2018, RT-Thread Development Team
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Change Logs:
 * Date           Author       Notes
 * 2018-08-22     balanceTWK   first implementation
 */

#include <rtthread.h>
#include <rtdevice.h>
#include <board.h>

#define DBG_TAG "main"
#define DBG_LVL DBG_LOG
#include <rtdbg.h>

/* 定义 LED 亮灭电平 */
#define LED_ON  (0)
#define LED_OFF (1)

/* 定义 8 组 LED 闪灯表,其顺序为 R G B */
static const rt_uint8_t _blink_tab[][3] =
{
   
    {
   LED_ON, LED_ON, LED_ON},
    {
   LED_OFF, LED_ON, LED_ON},
    {
   LED_ON, LED_OFF, LED_ON},
    {
   LED_ON, LED_ON, LED_OFF},
    {
   LED_OFF, LED_OFF, LED_ON},
    {
   LED_ON, LED_OFF, LED_OFF},
    {
   LED_OFF, LED_ON, LED_OFF},
    {
   LED_OFF, LED_OFF, LED_OFF},
};

int main(void)
{
   
    unsigned int count = 1;
    unsigned int group_num = sizeof(_blink_tab)/sizeof(_blink_tab[0]);
    unsigned int group_current;

    /* 设置 RGB 灯引脚为输出模式 */
    rt_pin_mode(PIN_LED_R, PIN_MODE_OUTPUT);
    rt_pin_mode(PIN_LED_G, PIN_MODE_OUTPUT);
    rt_pin_mode(PIN_LED_B, PIN_MODE_OUTPUT);

    while (count > 0)
    {
   
        /* 获得组编号 */
        group_current = count % group_num;

        /* 控制 RGB 灯 */
        rt_pin_write(PIN_LED_R, _blink_tab[group_current][0]);
        rt_pin_write(PIN_LED_G, _blink_tab[group_current][1]);
        rt_pin_write(PIN_LED_B, _blink_tab[group_current][2]);

        /* 输出 LOG 信息 */
        LOG_D("group: %d | red led [%-3.3s] | green led [%-3.3s] | blue led [%-3.3s]",
            group_current,
            _blink_tab[group_current][0] == LED_ON ? "ON" : "OFF",
            _blink_tab[group_current][1] == LED_ON ? "ON" : "OFF",
            _blink_tab[group_current][2] == LED_ON ? "ON" : "OFF");

        /* 延时一段时间 */
        rt_thread_mdelay(500);
        count++;
    }
    return 0;
}

代码剖析

rt_pin_mode()

该函数的作用是 GPIO Pin 的初始化,定义为

/* RT-Thread Hardware PIN APIs */
void rt_pin_mode(rt_base_t pin, rt_base_t mode)
{
   
    RT_ASSERT(_hw_pin.ops != RT_NULL);
    _hw_pin.ops->pin_mode(&_hw_pin.parent, pin, mode);
}

参数 pin 是一个 rt_base_t 变量(long),下面的 GET_PIN() 是 STM32 的 pin 值宏定义,第一个参数填大写字母,第二个参数填数字。

#define GET_PIN(PORTx,PIN) (rt_base_t)((16 * ( ((rt_base_t)__STM32_PORT(PORTx) - (rt_base_t)GPIOA)/(0x0400UL) )) + PIN)

#define __STM32_PORT(port)  GPIO##port   // ## 是字符连接符,假如 port 为 A,则表示 GPIOA

例如实验中的 #define PIN_LED_R GET_PIN(E, 7) ,表示 GPIOE GPIO_Pin7

目前 RT-Thread 支持的引脚工作模式包括:

#define PIN_MODE_OUTPUT 0x00            /* 输出 */
#define PIN_MODE_INPUT 0x01             /* 输入 */
#define PIN_MODE_INPUT_PULLUP 0x02      /* 上拉输入 */
#define PIN_MODE_INPUT_PULLDOWN 0x03    /* 下拉输入 */
#define PIN_MODE_OUTPUT_OD 0x04         /* 开漏输出 */

在 bsp 的 drv_gpio.c 文件中,有底层 GPIO 驱动,下面是 STM32 的 GPIO 模式设置的驱动函数(大家应该很熟悉,就是用 HAL 库写的 GPIO 初始化代码)

static void stm32_pin_mode(rt_device_t dev, rt_base_t pin, rt_base_t mode)
{
   
    const struct pin_index *index;
    GPIO_InitTypeDef GPIO_InitStruct;

    index = get_pin(pin);
    if (index == RT_NULL)
    {
   
        return;
    }

    /* Configure GPIO_InitStructure */
    GPIO_InitStruct.Pin = index->pin;
    GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
    GPIO_InitStruct.Pull = GPIO_NOPULL;
    GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;

    if (mode == PIN_MODE_OUTPUT)
    {
   
        /* output setting */
        GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
        GPIO_InitStruct.Pull = GPIO_NOPULL;
    }
    else if (mode == PIN_MODE_INPUT)
    {
   
        /* input setting: not pull. */
        GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
        GPIO_InitStruct.Pull = GPIO_NOPULL;
    }
    else if (mode == PIN_MODE_INPUT_PULLUP)
    {
   
        /* input setting: pull up. */
        GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
        GPIO_InitStruct.Pull = GPIO_PULLUP;
    }
    else if (mode == PIN_MODE_INPUT_PULLDOWN)
    {
   
        /* input setting: pull down. */
        GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
        GPIO_InitStruct.Pull = GPIO_PULLDOWN;
    }
    else if (mode == PIN_MODE_OUTPUT_OD)
    {
   
        /* output setting: od. */
        GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_OD;
        GPIO_InitStruct.Pull = GPIO_NOPULL;
    }

    HAL_GPIO_Init(index->gpio, &GPIO_InitStruct);
}

rt_pin_write()

GPIO 写函数,下面是函数的定义,

void rt_pin_write(rt_base_t pin, rt_base_t value)
{
   
    RT_ASSERT(_hw_pin.ops != RT_NULL);
    _hw_pin.ops->pin_write(&_hw_pin.parent, pin, value);
}

和 GPIO 模式配置函数类似,它其实也会调用底层驱动里对应的函数,该底层函数是通过 HAL_GPIO_WritePin() 来完成 GPIO Pin 的修改。

static void stm32_pin_write(rt_device_t dev, rt_base_t pin, rt_base_t value)
{
   
    const struct pin_index *index;

    index = get_pin(pin);
    if (index == RT_NULL)
    {
   
        return;
    }

    HAL_GPIO_WritePin(index->gpio, index->pin, (GPIO_PinState)value);
}

LOG_D()

本实验中,我们可以将 LOG_D() 视为 rt_kprintf()

#define dbg_log_line(lvl, color_n, fmt, ...)                \
    do                                                      \
    {
                                                            \
        _DBG_LOG_HDR(lvl, color_n);                         \
        rt_kprintf(fmt, ##__VA_ARGS__);                     \
        _DBG_LOG_X_END;                                     \
    }                                                       \
    while (0)

LOG_D 是 RT-Thread 内核里的一个日志打印函数,详情可见:《RT-Thread 文档中心——ulog 日志》

RT-Thread 的日志 API 包括:

rt_thread_mdelay()

这是 RT-Thread 的毫秒级延时函数,定义如下:

rt_err_t rt_thread_mdelay(rt_int32_t ms)
{
   
    rt_tick_t tick;

	// 获取需要的时钟节拍
    tick = rt_tick_from_millisecond(ms);
	
	// 阻塞相应的节拍时间
    return rt_thread_sleep(tick);
}

rt_tick_from_millisecond()


/**
 * 算出 ms 对应的时钟节拍数
 * 
 *
 * @param ms the specified millisecond
 *           - Negative Number wait forever
 *           - Zero not wait
 *           - Max 0x7fffffff
 *
 * @return the calculated tick
 */
rt_tick_t rt_tick_from_millisecond(rt_int32_t ms)
{
   
    rt_tick_t tick;

    if (ms < 0)
    {
   
        tick = (rt_tick_t)RT_WAITING_FOREVER;  // -1 
    }
    else
    {
   
    	// 将“每秒节拍数” / 1000 * ms,算出对应的秒节拍数
        tick = RT_TICK_PER_SECOND * (ms / 1000);
		
		// 加上小于 1000ms 部分的节拍数
        tick += (RT_TICK_PER_SECOND * (ms % 1000) + 999) / 1000;
    }
    
    /* return the calculated tick */
    return tick;
}

rt_thread_sleep()

线程睡眠(挂起)函数,参数是系统节拍数:

/**
 * 该函数能让当前线程挂起一段时间(由 tick 决定)
 *
 * @param tick the sleep ticks
 *
 * @return RT_EOK
 */
rt_err_t rt_thread_sleep(rt_tick_t tick)
{
   
    register rt_base_t temp;
    struct rt_thread *thread;

    /* set to current thread */
    thread = rt_thread_self();
    RT_ASSERT(thread != RT_NULL);
    RT_ASSERT(rt_object_get_type((rt_object_t)thread) == RT_Object_Class_Thread);

    /* disable interrupt */
    temp = rt_hw_interrupt_disable();

    /* suspend thread */
    rt_thread_suspend(thread);

    /* reset the timeout of thread timer and start it */
    rt_timer_control(&(thread->thread_timer), RT_TIMER_CTRL_SET_TIME, &tick);
    rt_timer_start(&(thread->thread_timer));

    /* enable interrupt */
    rt_hw_interrupt_enable(temp);

    rt_schedule();

    /* clear error number of this thread to RT_EOK */
    if (thread->error == -RT_ETIMEOUT)
        thread->error = RT_EOK;

    return RT_EOK;
}

转载:https://blog.csdn.net/weixin_43772810/article/details/125559305
查看评论
* 以上用户言论只代表其个人观点,不代表本网站的观点或立场