飞道的博客

非局部均值滤波(NL-means)算法的CUDA优化加速

476人阅读  评论(0)

在上一篇文章中,我们讲了使用积分图来加速NL-means算法,虽然运算耗时减少了好多,还是没达到毫秒级。所以本文在积分图加速的基础上,进一步使用CUDA来并行加速,使得耗时减少到毫秒级。

使用积分图来加速NL-means算法原理,此处给出链接,不再复述:

非局部均值滤波(NL-means)算法的原理与C++实现

非局部均值滤波(NL-means)算法的积分图加速原理与C++实现

1. 使用CUDA并行计算内两层循环

由上篇文章,我们知道使用积分图加速的计算顺序是:外两层循环是搜索窗口循环,内两层循环是原图像循环。


   
  1. for 搜索窗口的每一行
  2. {
  3. for 搜索窗口的每一列 //在这一层循环确定了所有搜索窗口中相同偏移位置的点
  4. {
  5. for 原图像的每一行
  6. {
  7. for 原图像的每一列 //在这一层循环确定了原图像中的一个待滤波点
  8. {
  9. }
  10. }
  11. }
  12. }

假设原图像为m行n列图像,搜索窗口的大小为2half_ssize+1行2half_ssize+1列,那么我们可以使用CUDA开启m*n个线程并行计算内两层循环,每一个线程对应原图像的一个点。这样一来,总循环次数由原来的(2half_ssize+1)*(2half_ssize+1)*m*n减少为(2half_ssize+1)*(2half_ssize+1),因此可以大程度减少计算耗时。


   
  1. for 搜索窗口的每一行
  2. {
  3. for 搜索窗口的每一列 //在这一层循环确定了所有搜索窗口中相同偏移位置的点
  4. {
  5. //CUDA并行计算内两层循环的每一个点
  6. }
  7. }

我们还知道,内两层循环要执行的计算步骤包括:

(1) 构造平方差图像;

(2) 计算平方差图像的积分图;

积分图的并行计算原理,我们在在前文主要讲了两种思路,由于思路2更加细化的分块并行计算,因此思路2要比思路1更快,虽然看起来思路2的计算步骤更多。

积分图的一种CUDA并行运算

思路1

步骤一:开启m个线程,每个线程分别对应原图像的一行,负责计算该行的前缀和,所有线程并行计算。该步骤计算结束之后,得到了m*n的行前缀和图像。
     步骤二:开启n个线程,每个线程分别对应行前缀和图像的一列,负责计算该列的前缀和,所有线程并行计算。该步骤计算结束之后,则得到m*n的积分图像。

思路2:在思路1的基础上进一步分块并行计算。

(3) 使用积分图快速计算搜索窗口内点的权重,然后累加权重,以及累加权重与搜索窗口内点的乘积。

因此如果要并行计算内两层循环,就涉及到平方差图像的并行计算、积分图的并行计算,还有权重、权重和、像素值加权和的并行计算。

此外,外两层循环结束之后,还要计算“像素值加权和/权重和”,使像素值加权和得到归一化,这里也可以并行计算。

我们根据思路2来计算积分图,使用8个CUDA核函数来实现内两层循环,使用1个CUDA核函数实现“像素值加权和/权重和”的计算。总共9个核函数,且这9个核函数按顺序执行(核函数内部并行执行,但核函数之间顺序执行):


   
  1. for 搜索窗口的每一行
  2. {
  3. for 搜索窗口的每一列 //在这一层循环确定了所有搜索窗口中相同偏移位置的点
  4. {
  5. //计算平方差图像的核函数
  6. //积分图核函数1
  7.      //积分图核函数2
  8. //积分图核函数3
  9. //积分图核函数4
  10. //积分图核函数5
  11. //积分图核函数6
  12. //计算权重、权重和、像素值加权和的核函数
  13. }
  14. }
  15. //计算“像素值加权和/权重和”的核函数

讲完并行计算思路,下面我们上代码。

计算差值平方图的核函数代码:


   
  1. __ global__ void cuda_SqDiff2_tex(float *src, float *diff2, int Ds, int t1, int t2, int m1, int n1)
  2. {
  3. int j = threadIdx.x + blockDim.x * blockIdx.x; //col
  4. int i = threadIdx.y + blockDim.y * blockIdx.y; //row
  5. if (i < m1 && j < n1)
  6.   {
  7. float diff;
  8. int src_n = n1 + Ds + Ds;
  9. int index = (i + Ds)*src_n + j + Ds;
  10.     diff = src[index] - src[index + t1*src_n + t2];    //src[(i+Ds)*src_n+j+Ds] - src[(i+Ds+t1)*src_n+j+Ds+t2];            
  11.     diff2[i*n1 + j] = diff*diff;
  12. }
  13. }

积分图核函数1代码:


   
  1. __ global__ void cuda_integal0_tex(float *src, float *integral, int row, int col)
  2. {
  3. int idx = threadIdx.x + blockDim.x * blockIdx.x; //col/4
  4. int idy = threadIdx.y + blockDim.y * blockIdx.y; //row
  5. if (idx < col / 4 && idy < row)
  6. {
  7. int offset = idy*col + idx * 4; //每个小块的首地址
  8. integral[offset] = src[offset];
  9. integral[offset + 1] = src[offset + 1] + integral[offset];
  10. integral[offset + 2] = src[offset + 2] + integral[offset + 1];
  11. integral[offset + 3] = src[offset + 3] + integral[offset + 2];
  12. }
  13. }

积分图核函数2代码:


   
  1. __ global__ void cuda_integal1_tex(float *integral, int row, int col)
  2. {
  3. int idx = threadIdx.x + blockDim.x * blockIdx.x; //row
  4. if (idx < row)
  5. {
  6. int offset = idx*col;
  7. for ( int i = 7; i < col; i += 4)
  8. {
  9. integral[offset + i] += integral[offset + i - 4];
  10. }
  11. }
  12. }

积分图核函数3代码:


   
  1. __ global__ void cuda_integal2_tex(float *integral, int row, int col)
  2. {
  3. int idx = threadIdx.x + blockDim.x * blockIdx.x; //col/4
  4. int idy = threadIdx.y + blockDim.y * blockIdx.y; //row
  5. if (idx > 0 && idx < col / 4 && idy < row)
  6. {
  7. int offset = idy*col + idx * 4; //每个小块的首地址
  8. float pre_sum = integral[idy*col + (idx * 4 - 1)]; //前一个小块的最后一个数
  9. integral[offset] += pre_sum;
  10. integral[offset + 1] += pre_sum;
  11. integral[offset + 2] += pre_sum;
  12. }
  13. }

积分图核函数4代码:


   
  1. __ global__ void cuda_integal3_tex(float *integral, int row, int col)
  2. {
  3. int idx = threadIdx.x + blockDim.x * blockIdx.x; //col
  4. int idy = threadIdx.y + blockDim.y * blockIdx.y; //row/4
  5. if (idx < col && idy < row / 4)
  6. {
  7. int offset = idy * 4 * col + idx; //每个小块的首地址
  8. int offset1 = offset + col;
  9. int offset2 = offset1 + col;
  10. int offset3 = offset2 + col;
  11. integral[offset1] += integral[offset];
  12. integral[offset2] += integral[offset1];
  13. integral[offset3] += integral[offset2];
  14. }
  15. }

积分图核函数5代码:


   
  1. __ global__ void cuda_integal4_tex(float *integral, int row, int col)
  2. {
  3. int idx = threadIdx.x + blockDim.x * blockIdx.x; //col
  4. if (idx < col)
  5. {
  6. int col_4 = 4 * col;
  7. for ( int i = 7; i < row; i += 4)
  8. {
  9. //integral[i*col + idx] += integral[(i - 4)*col + idx];
  10. int offset = i*col + idx;
  11. integral[offset] += integral[offset - col_4];
  12. }
  13. }
  14. }

积分图核函数6代码:


   
  1. __ global__ void cuda_integal5_tex(float *integral, int row, int col)
  2. {
  3. int idx = threadIdx.x + blockDim.x * blockIdx.x; //col
  4. int idy = threadIdx.y + blockDim.y * blockIdx.y; //row/4
  5. if (idx < col && idy > 0 && idy < row / 4)
  6. {
  7. int offset = idy * 4 * col + idx; //每个小块的首地址
  8. float pre_sum = integral[(idy * 4 - 1)*col + idx]; //前一个小块的最后一个数
  9. integral[offset] += pre_sum;
  10. integral[offset + col] += pre_sum;
  11. integral[offset + col + col] += pre_sum;
  12. }
  13. }

计算权重、权重和、像素值加权和的核函数代码:


   
  1. __global__ void NLmeansKernel_tex(float *v, float *St, int t1, int t2, int Ds, int ds, float d2, float h2, int m, int n, int n1, float *sweight, float *average)
  2. {
  3. int idx = threadIdx.x + blockDim.x * blockIdx.x; //col
  4. int idy = threadIdx.y + blockDim.y * blockIdx.y; //row
  5. int i1; //行
  6. int j1; //列
  7. int index1, index2;
  8. double dist2;
  9. int i1n1;
  10. int dsn1;
  11. if (idx < n && idy < m)
  12. {
  13. i1 = idy + ds + 1; //行
  14. j1 = idx + ds + 1; //列
  15. i1n1 = i1*n1;
  16. dsn1 = ds*n1;
  17. //dist2 = (St[(i1+ds)*n1+(j1+ds)] + St[(i1-ds-1)*n1+(j1-ds-1)]) - (St[(i1+ds)*n1+(j1-ds-1)] + St[(i1-ds-1)*n1+(j1+ds)]);
  18. dist2 = (St[(i1n1 + dsn1) + (j1 + ds)] + St[(i1n1 - dsn1 - n1) + (j1 - ds - 1)]) - (St[(i1n1 + dsn1) + (j1 - ds - 1)] + St[(i1n1 - dsn1 - n1) + (j1 + ds)]);
  19.     dist2 /= (-d2*h2);
  20. dist2 = exp(dist2);
  21. index1 = idy*n + idx;
  22. //index2 = (idy + Ds + t1)*(n + 2 * Ds) + (idx + Ds + t2);
  23. index2 = (idy + Ds + t1 + ds)*(n + 2 * (Ds + ds + 1)) + (idx + Ds + t2 + ds);
  24. sweight[index1] += dist2;
  25. average[index1] += dist2 * v[index2];
  26. }
  27. }

计算“像素值加权和/权重和”的代码:


   
  1. __ global__ void cuda_mean(float *average, float *sweight, int m, int n)
  2. {
  3. int j = threadIdx.x + blockDim.x * blockIdx.x; //col
  4. int i = threadIdx.y + blockDim.y * blockIdx.y; //row
  5. if (i < m && j < n)
  6. {
  7.      int index = i*n + j;
  8. average[index] /= sweight[index];
  9. }
  10. }

主体函数代码:


   
  1. void cuda_fastNLmeans_tex(Mat src, Mat &dst, int ds, int Ds, float h)
  2. {
  3.   Mat src_tmp;
  4. src.convertTo(src_tmp, CV_32F);
  5. int row_r = src_tmp.rows % 4;
  6. int col_r = src_tmp.cols % 4;
  7. if (row_r || col_r) //这里要扩充边缘时因为积分图的计算以4为block,因此图像尺寸必须为4的倍数
  8. {
  9. copyMakeBorder(src_tmp, src_tmp, 0, row_r, 0, col_r, BORDER_REFLECT); //扩充边缘
  10. }
  11. int m = src_tmp.rows;
  12. int n = src_tmp.cols;
  13. int boardSize_x = Ds + ds + 1;
  14. int boardSize_y = Ds + ds + 1;
  15. Mat src_board;
  16. copyMakeBorder(src_tmp, src_board, boardSize_y, boardSize_y, boardSize_x, boardSize_x, BORDER_REFLECT);
  17. float h2 = h*h;
  18. float d2 = ( float)( 2 * ds + 1)*( 2 * ds + 1);
  19. int m1 = src_board.rows - 2 * Ds; //行
  20. int n1 = src_board.cols - 2 * Ds; //列
  21.                     
  22.    //host端
  23. int img_size = sizeof( float) * m * n;
  24. int img_size1 = sizeof( float) * m1 * n1;
  25. int img_size3 = sizeof( float) * src_board.rows * src_board.cols;
  26. //
  27. float *sweight_array = ( float *) malloc(img_size);
  28. float *average_array = ( float *) malloc(img_size);
  29. //device端
  30. float *sweight_array_cuda;
  31.    float *average_array_cuda;
  32. float *src_board_cuda;
  33. float *diff2_cuda;
  34. float *integral;
  35. cudaMalloc(( void**)&sweight_array_cuda, img_size);
  36. cudaMalloc(( void**)&average_array_cuda, img_size);
  37. cudaMalloc(( void**)&src_board_cuda, img_size3);
  38. cudaMalloc(( void**)&diff2_cuda, img_size1);
  39. cudaMalloc(( void**)&integral, m1*n1 * sizeof( float));
  40. //
  41. cudaMemset(sweight_array_cuda, 0.0, img_size);
  42. cudaMemset(average_array_cuda, 0.0, img_size);
  43. cudaMemcpy(src_board_cuda, ( float *)src_board.data, img_size3, cudaMemcpyHostToDevice);
  44. //
  45. dim3 dimBlock(16, 16); //每个线程块有16*16个线程
  46. int M = (src.cols + dimBlock.x - 1) / dimBlock.x;
  47. int N = (src.rows + dimBlock.y - 1) / dimBlock.y;
  48. dim3 dimGrid(M, N); //M*N个线程块
  49. dim3 diffBlock(16, 16); //每个线程块有16*16个线程
  50. M = (n1 + diffBlock.x - 1) / diffBlock.x;
  51. N = (m1 + diffBlock.y - 1) / diffBlock.y;
  52. dim3 diffGrid(M, N);
  53. dim3 k0block(16, 16); //row*(col/4)
  54. dim3 k0grid((n1 / 4 + k0block.x - 1) / k0block.x, (m1 + k0block.y - 1) / k0block.y);
  55. dim3 k1block(16, 1); //row
  56. dim3 k1grid((m1 + k1block.x - 1) / k1block.x, 1);
  57. dim3 k2block = k0block; //row*(col/4)
  58. dim3 k2grid = k0grid;
  59. dim3 k3block(16, 16); //(row/4)*col
  60. dim3 k3grid((n1 + k3block.x - 1) / k3block.x, (m1 / 4 + k3block.y - 1) / k3block.y);
  61. dim3 k4block(16, 1); //col
  62. dim3 k4grid((n1 + k4block.x - 1) / k4block.x, 1);
  63. dim3 k5block = k3block;
  64. dim3 k5grid = k3grid;
  65. //
  66. for ( int t1 = -Ds; t1 <= Ds; t1++)
  67. {
  68. for ( int t2 = -Ds; t2 <= Ds; t2++)
  69. {
  70. cuda_SqDiff2_tex << <diffGrid, diffBlock >> >(src_board_cuda, diff2_cuda, Ds, t1, t2, m1, n1); //计算差值平方图
  71. cuda_integal0_tex << <k0grid, k0block >> >(diff2_cuda, integral, m1, n1);
  72. cuda_integal1_tex << <k1grid, k1block >> >(integral, m1, n1);
  73. cuda_integal2_tex << <k2grid, k2block >> >(integral, m1, n1);
  74. cuda_integal3_tex << <k3grid, k3block >> >(integral, m1, n1);
  75. cuda_integal4_tex << <k4grid, k4block >> >(integral, m1, n1);
  76. cuda_integal5_tex << <k5grid, k5block >> >(integral, m1, n1);
  77. NLmeansKernel_tex << <dimGrid, dimBlock >> >(src_board_cuda, integral, t1, t2, Ds, ds, d2, h2, m, n, n1, sweight_array_cuda, average_array_cuda);
  78. }
  79. }
  80. ///
  81. dim3 meanBlock(16, 16); //每个线程块有16*16个线程
  82. M = (n + meanBlock.x - 1) / meanBlock.x;
  83. N = (m + meanBlock.y - 1) / meanBlock.y;
  84. dim3 meanGrid(M, N);
  85. cuda_mean << <meanGrid, meanBlock >> >(average_array_cuda, sweight_array_cuda, m, n); //除以权重归一化
  86. cudaMemcpy(average_array, average_array_cuda, img_size, cudaMemcpyDeviceToHost); //这里的内存拷贝是阻塞拷贝,必须等待上方所有kernel运行完毕才会进行拷贝
  87.                                             
  88. Mat average(m, n, CV_32FC1, average_array);
  89. Mat dst_tmp;
  90. average(Rect( 0, 0, src.cols, src.rows)).convertTo(dst_tmp, CV_8U);
  91. dst = dst_tmp.clone(); //为了确保dst连续,所以clone了一份
  92. cudaFree(sweight_array_cuda);
  93. cudaFree(average_array_cuda);
  94. cudaFree(src_board_cuda);
  95. cudaFree(diff2_cuda);
  96. cudaFree(integral);
  97. free(sweight_array);
  98. free(average_array);
  99. }

运行上述代码,同样对496*472的Lena图像去噪,结果如下(左侧噪声图,右侧去噪图)。耗时由上文的1.6秒左右减少到约86毫秒,成功实现毫秒级加速,耶~!

2. 使用CUDA并行计算内三层循环

在上述并行思路中,内两层循环并行计算,还有外两层循环需要顺序计算。那么,还有没有进一步并行加速的思路呢,答案是有的。CUDA的线程可以是一维、二维、三维线程。在上方的并行思路中我们使用了二维线程,其实还可以使用三维线程来并行计算内三层循环,这时只有最外面一层循环需要顺序计算了,循环次数由(2half_ssize+1)*(2half_ssize+1)减少为2half_ssize+1,因此计算耗时进一步减少。


   
  1. for 搜索窗口的每一行
  2. {
  3.      //CUDA并行计算内三层循环
  4. }

由于三维线程有点复杂,核函数个数还是少一点好,我们选择使用上述思路1的积分图并行计算方法的来计算积分图。

上代码:

计算差值平方图的核函数代码:


   
  1. __ global__ void cuda_SqDiff2_dim3(float *src, float *diff2, int Ds, int t1, int m1, int n1)
  2. {
  3. int j = threadIdx.x + blockDim.x * blockIdx.x; //col
  4. int i = threadIdx.y + blockDim.y * blockIdx.y; //row
  5. int k = blockIdx.z; //t2 = k - Ds
  6. if (i < m1 && j < n1 && k <= 2*Ds)
  7. {
  8. //float data, diff;
  9. float diff;
  10. int src_n = n1 + Ds + Ds;
  11. int index = (i + Ds)*src_n + j + Ds;
  12. int t2 = k - Ds;
  13. diff = src[index] - src[index + t1*src_n + t2]; //src[(i+Ds)*src_n+j+Ds] - src[(i+Ds+t1)*src_n+j+Ds+t2];
  14.                               
  15. int offset = m1*n1*k; //k取0~2Ds
  16.     diff2[offset + i*n1 + j] = diff*diff;
  17. }
  18. }

积分图核函数1代码:


   
  1. __ global__ void cal_integral_X_dim3(float *src, float *integral_x, int Ds, int row, int col)
  2. {
  3. int idx = threadIdx.x + blockIdx.x*blockDim.x;
  4. int k = blockIdx.y; //t2 = k - Ds
  5. if (idx < row && k <= 2*Ds)
  6. {
  7. int row_offset = k*row*col + idx*col;
  8. integral_x[row_offset] = src[row_offset];
  9. for ( int i = 1; i < col; i++)
  10. {
  11. int index = row_offset + i;
  12. integral_x[index] = src[index] + integral_x[index - 1];
  13. }
  14. }
  15. }

积分图核函数2代码:


   
  1. __ global__ void cal_integral_Y_dim3(float *src, float *integral_y, int Ds, int row, int col)
  2. {
  3. int idx = threadIdx.x + blockIdx.x*blockDim.x;
  4. int k = blockIdx.y; //t2 = k - Ds
  5. if (idx < col && k <= 2*Ds)
  6. {
  7. int offset = k*row*col;
  8. integral_y[offset+idx] = src[offset+idx];
  9. for ( int i = 1; i < row; i++)
  10. {
  11. int col_offset = offset + i*col + idx;
  12. integral_y[col_offset] = src[col_offset] + integral_y[col_offset - col];
  13. }
  14. }
  15. }

计算权重、权重和、像素值加权和的核函数代码:


   
  1. __global__ void NLmeansKernel_dim3(float *v, float *St, int t1, int Ds, int ds, float d2, float h2, int m, int n, int m1, int n1, float *sweight, float *average)
  2. {
  3. int idx = threadIdx.x + blockDim.x * blockIdx.x; //col
  4. int idy = threadIdx.y + blockDim.y * blockIdx.y; //row
  5. int k = blockIdx.z; //t2 = k - Ds
  6. int i1; //行
  7. int j1; //列
  8. int index1, index2;
  9. double dist2;
  10. int i1n1;
  11. int dsn1;
  12. if (idx < n && idy < m && k <= 2*Ds)
  13. {
  14. int t2 = k - Ds;
  15.      int st_offset = k*m1*n1;
  16. int sweight_offset = k*m*n;
  17. i1 = idy + ds + 1; //行
  18. j1 = idx + ds + 1; //列
  19. i1n1 = i1*n1;
  20. dsn1 = ds*n1;
  21. //dist2 = (St[(i1+ds)*n1+(j1+ds)] + St[(i1-ds-1)*n1+(j1-ds-1)]) - (St[(i1+ds)*n1+(j1-ds-1)] + St[(i1-ds-1)*n1+(j1+ds)]);
  22. dist2 = (St[st_offset + (i1n1 + dsn1) + (j1 + ds)] + St[st_offset + (i1n1 - dsn1 - n1) + (j1 - ds - 1)]) - (St[st_offset + (i1n1 + dsn1) + (j1 - ds - 1)] + St[st_offset + (i1n1 - dsn1 - n1) + (j1 + ds)]);
  23. dist2 /= (-d2*h2);
  24. dist2 = exp(dist2);
  25. index1 = sweight_offset + idy*n + idx;
  26. index2 = (idy + Ds + t1 + ds)*(n + 2 * (Ds + ds + 1)) + (idx + Ds + t2 + ds);
  27. sweight[index1] += dist2;
  28. average[index1] += dist2 * v[index2];
  29. }
  30. }

计算“像素值加权和/权重和”的代码:


   
  1. __global_ _ void cuda_mean_dim3(float *average, float *sweight, int Ds, int m, int n)
  2. {
  3. int j = threadIdx.x + blockDim.x * blockIdx.x; //col
  4. int i = threadIdx.y + blockDim.y * blockIdx.y; //row
  5. if (i < m && j < n)
  6. {
  7.      int  index = i*n + j;
  8. int cnt = Ds * 2;
  9. int img_size = m*n;
  10. int offset = img_size;
  11. for ( int k = 1; k <= cnt; k++)
  12. {
  13. average[ index] += average[offset + index];
  14. sweight[ index] += sweight[offset + index];
  15. offset += img_size;
  16. }
  17. average[ index] /= sweight[ index];
  18. }
  19. }

主体函数代码:


   
  1. void cuda_fastNLmeans_dim3(Mat src, Mat &dst, int ds, int Ds, float h)
  2. {
  3. Mat src_tmp;
  4. src.convertTo(src_tmp, CV_32F);
  5.  
  6. int m = src_tmp.rows;
  7. int n = src_tmp.cols;
  8. int boardSize_x = Ds + ds + 1;
  9. int boardSize_y = Ds + ds + 1;
  10. Mat src_board;
  11. copyMakeBorder(src_tmp, src_board, boardSize_y, boardSize_y, boardSize_x, boardSize_x, BORDER_REFLECT);
  12. float h2 = h*h;
  13.    float d2 = ( float)( 2 * ds +  1)*( 2 * ds +  1);
  14. int m1 = src_board.rows - 2 * Ds; //行
  15.    int n1 = src_board.cols -  2 * Ds;    //列
  16. int t2_num = 2 * Ds + 1;
  17. //host端
  18. int img_size = sizeof( float) * m * n;
  19. int img_size1 = sizeof( float) * m1 * n1;
  20. int img_size3 = sizeof( float) * src_board.rows * src_board.cols;
  21. //
  22. //device端
  23. float *sweight_array_cuda;
  24. float *average_array_cuda;
  25. float *src_board_cuda;
  26. float *diff2_cuda;
  27. cudaMalloc(( void**)&sweight_array_cuda, img_size*t2_num);
  28. cudaMalloc(( void**)&average_array_cuda, img_size*t2_num);
  29. cudaMalloc(( void**)&src_board_cuda, img_size3);
  30. cudaMalloc(( void**)&diff2_cuda, img_size1*t2_num);
  31. //
  32. cudaMemset(sweight_array_cuda, 0.0, img_size*t2_num);
  33. cudaMemset(average_array_cuda, 0.0, img_size*t2_num);
  34. cudaMemcpy(src_board_cuda, ( float *)src_board.data, img_size3, cudaMemcpyHostToDevice);
  35. //
  36. dim3 dimBlock(16, 16, 1); //每个线程块有16*16个线程
  37. int M = (src.cols + dimBlock.x - 1) / dimBlock.x;
  38. int N = (src.rows + dimBlock.y - 1) / dimBlock.y;
  39. dim3 dimGrid(M, N, t2_num); //M*N*t2_num个线程块
  40. dim3 diffBlock(16, 16, 1); //每个线程块有16*16个线程
  41. M = (n1 + diffBlock.x - 1) / diffBlock.x;
  42. N = (m1 + diffBlock.y - 1) / diffBlock.y;
  43. dim3 diffGrid(M, N, t2_num);
  44. float *y_presum;
  45. float *x_presum;
  46. cudaMalloc(( void**)&y_presum, m1*n1 * sizeof( float)*t2_num);
  47. cudaMalloc(( void**)&x_presum, m1*n1 * sizeof( float)*t2_num);
  48. int block_num = 16;
  49. M = (n1 + block_num - 1) / block_num; //n1是列
  50. N = (m1 + block_num - 1) / block_num; //m1是行
  51. dim3 integal_block_x(block_num, 1);
  52. dim3 integal_grid_x(N, t2_num);
  53. dim3 integal_block_y(block_num, 1);
  54. dim3 integal_grid_y(M, t2_num);
  55. //
  56. for ( int t1 = -Ds; t1 <= Ds; t1++)
  57. {
  58. cuda_SqDiff2_dim3 << <diffGrid, diffBlock >> >(src_board_cuda, diff2_cuda, Ds, t1, m1, n1); //计算差值平方图
  59. cal_integral_X_dim3 << <integal_grid_x, integal_block_x >> >(diff2_cuda, x_presum, Ds, m1, n1);
  60. cal_integral_Y_dim3 << <integal_grid_y, integal_block_y >> >(x_presum, y_presum, Ds, m1, n1);
  61. NLmeansKernel_dim3 << <dimGrid, dimBlock >> >(src_board_cuda, y_presum, t1, Ds, ds, d2, h2, m, n, m1, n1, sweight_array_cuda, average_array_cuda);
  62. }
  63. ///
  64. dim3 meanBlock(16, 16); //每个线程块有16*16个线程
  65. M = (n + meanBlock.x - 1) / meanBlock.x;
  66. N = (m + meanBlock.y - 1) / meanBlock.y;
  67. dim3 meanGrid(M, N);
  68. cuda_mean_dim3 << <meanGrid, meanBlock >> >(average_array_cuda, sweight_array_cuda, Ds, m, n); //除以权重归一化
  69. //
  70. Mat average(m, n, CV_32FC1);
  71. cudaMemcpy(( float *)average.data, average_array_cuda, img_size, cudaMemcpyDeviceToHost);
  72.   average.convertTo(dst, CV_8U);
  73. cudaFree(sweight_array_cuda);
  74. cudaFree(average_array_cuda);
  75. cudaFree(src_board_cuda);
  76. cudaFree(diff2_cuda);
  77. cudaFree(y_presum);
  78. cudaFree(x_presum);
  79. }

运行上述代码,也对496*472的Lena图像去噪,结果如下(左侧噪声图,右侧去噪图)。耗时由上文的86毫秒左右减少到约59毫秒,耗时进一步减少啦,嘿嘿~

我在想,其实是不是可以再进一步加速呢,比如使用思路2并行计算积分图,结合三维线程的使用,应该可以更进一步加速吧。本文就讲到这里,接下有时间来再试试哈~

本人公众号如下,不定期更新精彩内容,欢迎扫码关注~


转载:https://blog.csdn.net/shandianfengfan/article/details/114275349
查看评论
* 以上用户言论只代表其个人观点,不代表本网站的观点或立场