飞道的博客

手把手教你R语言实现Logistic回归列线图并校准度曲线绘制

1904人阅读  评论(0)

列线图作为常用的预测图形显示被常用在SCI论文中,在前面的章节,我们已经讲过怎么使用R语言制作COX回归的列线图制作,并进行了内部验证,今天我们来说说怎么使用R语言进行Logistic回归列线图并校准度曲线绘制。
我们使用SPSS自带的一个Breast cancer survival肿瘤数据来演示,
首先我们我们要把R包导入,
library(foreign)
library(survival)
library(rms)
然后导入数据,删除缺失值
bc <- read.spss(“E:/r/Breast cancer survival agec.sav”,
use.value.labels=F, to.data.frame=T)
bc <- na.omit(bc)

对数据进行打包
dd <- datadist(bc)
options(datadist=“dd”)

建立Logistic回归模型
formula1<-as.formula(status~ agec + pr + pathscat + ln_yesno)
fit1<-lrm(formula1,data = bc,x=T,y=T)

解析模型summary(fit1)

绘制列线图
nom1<-nomogram(fit1,
fun=function(x)1/(1+exp(-x)),
lp=F,
fun.at = c(0.1,0.3,0.5,0.7,0.9),
funlabel = “Risk”)
plot(nom1)

建立校准曲线并绘制曲线图
cal1<-calibrate(fit1,method = “boot”,B=1000)
plot(cal1,xlim=c(0,1.0),ylim=c(0,1.0),
xlab = “Nomogram Predicted Survival”, ylab = “Actual Survival”)

还可以对图片进行进一步美化

是不是非常简单呀,动动小手关注一下吧。


转载:https://blog.csdn.net/dege857/article/details/109766634
查看评论
* 以上用户言论只代表其个人观点,不代表本网站的观点或立场