传送门:
大数据学习系列:Hadoop3.0苦命学习(一)
大数据学习系列:Hadoop3.0苦命学习(二)
大数据学习系列:Hadoop3.0苦命学习(三)
大数据学习系列:Hadoop3.0苦命学习(四)
本节主要学习Flume。
目录
1 Flume 介绍
1.1 概述
- Flume 是一个分布式、可靠、和高可用的海量日志采集、聚合和传输的系统。
- Flume 可以采集文件,socket数据包、文件、文件夹、kafka等各种形式源数据,又可以将采集到的数据(下沉sink)输出到HDFS、hbase、hive、kafka等众多外部存储系统中
- 一般的采集需求,通过对 flume的简单配置即可实现
- Flume 针对特殊场景也具备良好的自定义扩展能力,因此,flume可以适用于大部分的日常数据采集场景
1.2 运行机制
- Flume分布式系统中最核心的角色是agent,flume采集系统就是由一个个agent所连接起来形成
- 每一个agent相当于一个数据传递员,内部有三个组件:
- Source:采集组件,用于跟数据源对接,以获取数据
- Sink:下沉组件,用于往下一级agent传递数据或者往最终存储系统传递数据
- Channel:传输通道组件,用于从source将数据传递到sink
1.3 Flume 结构图
简单结构
单个 Agent 采集数据
复杂结构
多级 Agent 之间串联
2 Flume 实战案例
案例:使用网络telent命令向一台机器发送一些网络数据,然后通过flume采集网络端口数据
2.1 Flume 的安装部署
Step 1: 下载解压修改配置文件
下载地址:官方下载地址
Flume的安装非常简单,只需要解压即可,当然,前提是已有hadoop环境
上传安装包到数据源所在节点上
cd /export/software/
tar -zxvf apache-flume-1.8.0-bin.tar.gz -C ../services/
cd /export/services/apache-flume-1.8.0-bin/conf/
cp flume-env.sh.template flume-env.sh
vim flume-env.sh
export JAVA_HOME=/export/services/jdk1.8.0_251
Step 2 开发配置文件
根据数据采集的需求配置采集方案,描述在配置文件中(文件名可任意自定义)
配置我们的网络收集的配置文件
在flume的conf目录下新建一个配置文件(采集方案)
vim /export/services/apache-flume-1.8.0-bin/conf/netcat-logger.conf
# 定义这个agent中各组件的名字
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# 描述和配置source组件:r1
a1.sources.r1.type = netcat
a1.sources.r1.bind = 192.168.188.100
a1.sources.r1.port = 44444
# 描述和配置sink组件:k1
a1.sinks.k1.type = logger
# 描述和配置channel组件,此处使用是内存缓存的方式
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# 描述和配置source channel sink之间的连接关系
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
Step 3 启动配置文件
指定采集方案配置文件,在相应的节点上启动flume agent
先用一个最简单的例子来测试一下程序环境是否正常
启动agent去采集数据
bin/flume-ng agent -c conf -f conf/netcat-logger.conf -n a1 -Dflume.root.logger=INFO,console
- -c conf 指定flume自身的配置文件所在目录
- -f conf/netcat-logger.con 指定我们所描述的采集方案
- -n a1 指定我们这个agent的名字
可以看到监控的主机和端口。
Step 4 安装 Telnet 准备测试
在node02机器上面安装telnet客户端,用于模拟数据的发送
yum -y install telnet
telnet node01 44444 # 使用telnet模拟数据发送
发送“消息”:
node01接收到“消息”:
2.2. 采集案例
2.2.1 采集目录到 HDFS
需求
某服务器的某特定目录下,会不断产生新的文件,每当有新文件出现,就需要把文件采集到HDFS中去
思路
根据需求,首先定义以下3大要素
- 数据源组件,即source ——监控文件目录 : spooldir
- 监视一个目录,只要目录中出现新文件,就会采集文件中的内容
- 采集完成的文件,会被agent自动添加一个后缀:COMPLETED
- 所监视的目录中不允许重复出现相同文件名的文件
- 下沉组件,即sink——HDFS文件系统 : hdfs sink
- 通道组件,即channel——可用file channel 也可以用内存channel
Step 1 Flume 配置文件
cd /export/services/apache-flume-1.8.0-bin/conf/
mkdir -p /export/services/dirfile
vim spooldir.conf
填写下列配置
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
##注意:不能往监控目中重复丢同名文件
a1.sources.r1.type = spooldir
a1.sources.r1.spoolDir = /export/services/dirfile
a1.sources.r1.fileHeader = true
# Describe the sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.channel = c1
a1.sinks.k1.hdfs.path = hdfs://node01:8020/spooldir/files/%y-%m-%d/%H%M/
a1.sinks.k1.hdfs.filePrefix = events-
a1.sinks.k1.hdfs.round = true
a1.sinks.k1.hdfs.roundValue = 10
a1.sinks.k1.hdfs.roundUnit = minute
a1.sinks.k1.hdfs.rollInterval = 3
a1.sinks.k1.hdfs.rollSize = 20
a1.sinks.k1.hdfs.rollCount = 5
a1.sinks.k1.hdfs.batchSize = 1
a1.sinks.k1.hdfs.useLocalTimeStamp = true
#生成的文件类型,默认是Sequencefile,可用DataStream,则为普通文本
a1.sinks.k1.hdfs.fileType = DataStream
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
Channel参数解释
capacity:默认该通道中最大的可以存储的event数量
trasactionCapacity:每次最大可以从source中拿到或者送到sink中的event数量
keep-alive:event添加到通道中或者移出的允许时间
Step 2 启动 Flume
bin/flume-ng agent -c ./conf -f ./conf/spooldir.conf -n a1 -Dflume.root.logger=INFO,console
Step 3 上传文件到指定目录
将不同的文件上传到/export/servers/dirfile
目录里面去,注意文件不能重名
aaa.txt 文件内容
hello sky
hello hello
hello too
可以看到上图产生了新的文件。
第一个文件内容如上。
2.2.2 采集文件到 HDFS
需求
比如业务系统使用log4j生成的日志,日志内容不断增加,需要把追加到日志文件中的数据实时采集到hdfs
分析
根据需求,首先定义以下3大要素
- 采集源,即 source——监控文件内容更新 : exec ‘tail -F file’
- 下沉目标,即 sink——HDFS文件系统 : hdfs sink
- Source 和sink之间的传递通道——channel,可用file channel 也可以用 内存channel
Step 1 定义 Flume 配置文件
cd /export/services/apache-flume-1.8.0-bin/conf/
vim tail-file.conf
填写下列配置:
agent1.sources = source1
agent1.sinks = sink1
agent1.channels = channel1
# Describe/configure tail -F source1
agent1.sources.source1.type = exec
agent1.sources.source1.command = tail -F /export/services/taillogs/access_log
agent1.sources.source1.channels = channel1
# Describe sink1
agent1.sinks.sink1.type = hdfs
#a1.sinks.k1.channel = c1
agent1.sinks.sink1.hdfs.path = hdfs://node01:8020/weblog/flume-collection/%y-%m-%d/%H%M/
agent1.sinks.sink1.hdfs.filePrefix = access_log
agent1.sinks.sink1.hdfs.maxOpenFiles = 5000
agent1.sinks.sink1.hdfs.batchSize= 100
agent1.sinks.sink1.hdfs.fileType = DataStream
agent1.sinks.sink1.hdfs.writeFormat =Text
agent1.sinks.sink1.hdfs.round = true
agent1.sinks.sink1.hdfs.roundValue = 10
agent1.sinks.sink1.hdfs.roundUnit = minute
agent1.sinks.sink1.hdfs.useLocalTimeStamp = true
# Use a channel which buffers events in memory
agent1.channels.channel1.type = memory
agent1.channels.channel1.keep-alive = 120
agent1.channels.channel1.capacity = 500000
agent1.channels.channel1.transactionCapacity = 600
# Bind the source and sink to the channel
agent1.sources.source1.channels = channel1
agent1.sinks.sink1.channel = channel1
Step 2 启动 Flume
cd /export/services/apache-flume-1.8.0-bin/
bin/flume-ng agent -c conf -f conf/tail-file.conf -n agent1 -Dflume.root.logger=INFO,console
Step 3 开发 Shell 脚本定时追加文件内容
mkdir -p /export/services/shells/
cd /export/services/shells/
vim tail-file.sh
脚本如下:
#!/bin/bash
while true
do
date >> /export/services/taillogs/access_log;
sleep 0.5;
done
Step 4 启动脚本
# 创建文件夹
mkdir -p /export/services/taillogs/
# 启动脚本
sh /export/services/shells/tail-file.sh
执行结果:
其中一个文件:
2.2.3 Agent 级联
分析
第一个agent负责收集文件当中的数据,通过网络发送到第二个agent当中去
第二个agent负责接收第一个agent发送的数据,并将数据保存到hdfs上面去
Step 1 Node02 安装 Flume
将node01机器上面解压后的flume文件夹拷贝到node02机器上面去
cd /export/services/
scp -r apache-flume-1.8.0-bin/ node02:$PWD
Step 2 Node02 配置 Flume
在node02机器配置我们的flume
cd /export/services/apache-flume-1.8.0-bin/conf/
vim tail-avro-avro-logger.conf
配置如下:
##################
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /export/services/taillogs/access_log
a1.sources.r1.channels = c1
# Describe the sink
##sink端的avro是一个数据发送者
a1.sinks = k1
a1.sinks.k1.type = avro
a1.sinks.k1.channel = c1
a1.sinks.k1.hostname = 192.168.188.100
a1.sinks.k1.port = 4141
a1.sinks.k1.batch-size = 10
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
Step 3 开发脚本向文件中写入数据
直接将node01下面的脚本拷贝到node02即可,node01机器上执行以下命令
cd /export/services/
scp -r shells/ node02:$PWD
Step 4 Node01 Flume 配置文件
在node01机器上开发flume的配置文件
cd /export/services/apache-flume-1.8.0-bin/
vim avro-hdfs.conf
配置如下:
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
##source中的avro组件是一个接收者服务
a1.sources.r1.type = avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = 192.168.188.100
a1.sources.r1.port = 4141
# Describe the sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path = hdfs://node01:8020/avro/%y-%m-%d/%H%M/
a1.sinks.k1.hdfs.filePrefix = events-
a1.sinks.k1.hdfs.round = true
a1.sinks.k1.hdfs.roundValue = 10
a1.sinks.k1.hdfs.roundUnit = minute
a1.sinks.k1.hdfs.rollInterval = 3
a1.sinks.k1.hdfs.rollSize = 20
a1.sinks.k1.hdfs.rollCount = 5
a1.sinks.k1.hdfs.batchSize = 1
a1.sinks.k1.hdfs.useLocalTimeStamp = true
#生成的文件类型,默认是Sequencefile,可用DataStream,则为普通文本
a1.sinks.k1.hdfs.fileType = DataStream
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
Step 5 顺序启动
node01机器启动flume进程
cd /export/services/apache-flume-1.8.0-bin/
bin/flume-ng agent -c conf -f conf/avro-hdfs.conf -n a1 -Dflume.root.logger=INFO,console
node02机器启动flume进程
cd /export/services/apache-flume-1.8.0-bin/
bin/flume-ng agent -c conf -f conf/tail-avro-avro-logger.conf -n a1 -Dflume.root.logger=INFO,console
node02机器启shell脚本生成文件
cd /export/services/shells/
sh tail-file.sh
执行结果:
3 高可用方案
在完成单点的Flume NG搭建后,下面我们搭建一个高可用的Flume NG集群,架构图如下所示:
3.1 角色分配
Flume的Agent和Collector分布如下表所示:
名称 | HOST | 角色 |
---|---|---|
Agent1 | node01 | Web |
Collector1 | node02 | AgentMstr1 |
Collector2 | node03 | AgentMstr2 |
图中所示,Agent1数据分别流入到Collector1和Collector2,Flume NG本身提供了Failover机制,可以自动切换和恢复。在上图中,有3个产生日志服务器分布在不同的机房,要把所有的日志都收集到一个集群中存储。下 面我们开发配置Flume NG集群
3.2 Node01 安装和配置
将node01机器上面的flume安装包以及文件生产的两个目录拷贝到node03机器上面去
node01机器执行以下命令
cd /export/services/
scp -r apache-flume-1.8.0-bin/ node03:$PWD
scp -r shells/ taillogs/ node03:$PWD
node01机器配置agent的配置文件
cd /export/services/apache-flume-1.8.0-bin/conf/
vim agent.conf
配置如下:
#agent1 name
agent1.channels = c1
agent1.sources = r1
agent1.sinks = k1 k2
#
##set gruop
agent1.sinkgroups = g1
#
agent1.sources.r1.channels = c1
agent1.sources.r1.type = exec
agent1.sources.r1.command = tail -F /export/services/taillogs/access_log
#
##set channel
agent1.channels.c1.type = memory
agent1.channels.c1.capacity = 1000
agent1.channels.c1.transactionCapacity = 100
#
## set sink1
agent1.sinks.k1.channel = c1
agent1.sinks.k1.type = avro
agent1.sinks.k1.hostname = node02
agent1.sinks.k1.port = 52020
#
## set sink2
agent1.sinks.k2.channel = c1
agent1.sinks.k2.type = avro
agent1.sinks.k2.hostname = node03
agent1.sinks.k2.port = 52020
#
##set sink group
agent1.sinkgroups.g1.sinks = k1 k2
#
##set failover
agent1.sinkgroups.g1.processor.type = failover
agent1.sinkgroups.g1.processor.priority.k1 = 10
agent1.sinkgroups.g1.processor.priority.k2 = 1
agent1.sinkgroups.g1.processor.maxpenalty = 10000
3.3 Node02 与 Node03 配置 FlumeCollection
node02机器修改配置文件
cd /export/services/apache-flume-1.8.0-bin/conf/
vim collector.conf
配置如下:
#set Agent name
a1.sources = r1
a1.channels = c1
a1.sinks = k1
#
##set channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
#
## other node,nna to nns
a1.sources.r1.type = avro
a1.sources.r1.bind = node02
a1.sources.r1.port = 52020
a1.sources.r1.channels = c1
#
##set sink to hdfs
a1.sinks.k1.type=hdfs
a1.sinks.k1.hdfs.path= hdfs://node01:8020/flume/failover/
a1.sinks.k1.hdfs.fileType=DataStream
a1.sinks.k1.hdfs.writeFormat=TEXT
a1.sinks.k1.hdfs.rollInterval=10
a1.sinks.k1.channel=c1
a1.sinks.k1.hdfs.filePrefix=%Y-%m-%d
a1.sinks.k1.hdfs.useLocalTimeStamp = true
#
node03机器修改配置文件
cd /export/servers/apache-flume-1.8.0-bin/conf
vim collector.conf
配置如下:
#set Agent name
a1.sources = r1
a1.channels = c1
a1.sinks = k1
#
##set channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
#
## other node,nna to nns
a1.sources.r1.type = avro
a1.sources.r1.bind = node03
a1.sources.r1.port = 52020
a1.sources.r1.channels = c1
#
##set sink to hdfs
a1.sinks.k1.type=hdfs
a1.sinks.k1.hdfs.path= hdfs://node01:8020/flume/failover/
a1.sinks.k1.hdfs.fileType=DataStream
a1.sinks.k1.hdfs.writeFormat=TEXT
a1.sinks.k1.hdfs.rollInterval=10
a1.sinks.k1.channel=c1
a1.sinks.k1.hdfs.filePrefix=%Y-%m-%d
a1.sinks.k1.hdfs.useLocalTimeStamp = true
3.4 顺序启动
node03机器上面启动flume
cd /export/services/apache-flume-1.8.0-bin/
bin/flume-ng agent -n a1 -c conf -f conf/collector.conf -Dflume.root.logger=INFO,console
node02机器上面启动flume
cd /export/services/apache-flume-1.8.0-bin/
bin/flume-ng agent -n a1 -c conf -f conf/collector.conf -Dflume.root.logger=INFO,console
node01机器上面启动flume
cd /export/services/apache-flume-1.8.0-bin/
bin/flume-ng agent -n agent1 -c conf -f conf/agent.conf -Dflume.root.logger=INFO,console
node01机器启动文件产生脚本
cd /export/services/shells/
sh tail-file.sh
测试结果是:
我们在Agent1节点变更文件数据,由于我们配置Collector1的权重比Collector2大,所以 Collector1优先采集并上传到存储系统。然后我们kill掉Collector1,此时有Collector2负责日志的采集上传工作,之后,我 们手动恢复Collector1节点的Flume服务,再次在Agent1变更文件数据,发现Collector1恢复优先级别的采集工作。
4 Flume 的负载均衡
负载均衡是用于解决一台机器(一个进程)无法解决所有请求而产生的一种算法。Load balancing Sink Processor 能够实现 load balance 功能,如下图Agent1 是一个路由节点,负责将 Channel 暂存的 Event 均衡到对应的多个 Sink组件上,而每个 Sink 组件分别连接到一个独立的 Agent 上,示例配置,如下所示:
在此处我们通过三台机器来进行模拟 flume的负载均衡
三台机器规划如下:
- node01:采集数据,发送到node02和node03机器上去
- node02:接收node01的部分数据
- node03:接收node01的部分数据
第一步 开发node01服务器的flume配置
node01服务器配置:
cd /export/services/apache-flume-1.8.0-bin/conf/
vim load_banlancer_client.conf
配置如下:
# agent name
a1.channels = c1
a1.sources = r1
a1.sinks = k1 k2
# set gruop
a1.sinkgroups = g1
# set channel
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
a1.sources.r1.channels = c1
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /export/services/taillogs/access_log
# set sink1
a1.sinks.k1.channel = c1
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = node02
a1.sinks.k1.port = 52020
# set sink2
a1.sinks.k2.channel = c1
a1.sinks.k2.type = avro
a1.sinks.k2.hostname = node03
a1.sinks.k2.port = 52020
# set sink group
a1.sinkgroups.g1.sinks = k1 k2
# set failover
a1.sinkgroups.g1.processor.type = load_balance
a1.sinkgroups.g1.processor.backoff = true
a1.sinkgroups.g1.processor.selector = round_robin
a1.sinkgroups.g1.processor.selector.maxTimeOut=10000
第二步 开发node02服务器的flume配置
cd /export/services/apache-flume-1.8.0-bin/conf/
vim load_banlancer_server.conf
配置如下:
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = node02
a1.sources.r1.port = 52020
# Describe the sink
a1.sinks.k1.type = logger
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
第三步 开发 node03服务器flume配置
node03服务器配置
cd /export/services/apache-flume-1.8.0-bin/conf/
vim load_banlancer_server.conf
配置如下:
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = node03
a1.sources.r1.port = 52020
# Describe the sink
a1.sinks.k1.type = logger
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
第四步 准备启动 flume服务
启动node03的flume服务
cd /export/services/apache-flume-1.8.0-bin/
bin/flume-ng agent -n a1 -c conf -f conf/load_banlancer_server.conf -Dflume.root.logger=INFO,console
启动node02的flume服务
cd /export/services/apache-flume-1.8.0-bin/
bin/flume-ng agent -n a1 -c conf -f conf/load_banlancer_server.conf -Dflume.root.logger=INFO,console
启动node01的flume服务
cd /export/services/apache-flume-1.8.0-bin/
bin/flume-ng agent -n a1 -c conf -f conf/load_banlancer_client.conf -Dflume.root.logger=INFO,console
第五步 node01服务器运行脚本产生数据
cd /export/services/shells
sh tail-file.sh
结果:轮询消费数据,达到负载均衡效果。
5 Flume 案例
5.1 案例场景
A、B两台日志服务机器实时生产日志主要类型为access.log、nginx.log、web.log
现在要求:
把A、B 机器中的access.log、nginx.log、web.log 采集汇总到C机器上然后统一收集到hdfs中。
但是在hdfs中要求的目录为:
/source/logs/access/20180101/**
/source/logs/nginx/20180101/**
/source/logs/web/20180101/**
5.2 场景分析
5.3 数据流程处理分析
5.4 实现
服务器A对应的IP为 192.168.174.100
服务器B对应的IP为 192.168.174.110
服务器C对应的IP为 192.168.174.120
采集端配置文件开发
node03与node02服务器开发flume的配置文件
cd /export/services/apache-flume-1.8.0-bin/conf/
vim exec_source_avro_sink.conf
配置如下:
# Name the components on this agent
a1.sources = r1 r2 r3
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /export/services/taillogs/access.log
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = static
## static拦截器的功能就是往采集到的数据的header中插入自己定## 义的key-value对
a1.sources.r1.interceptors.i1.key = type
a1.sources.r1.interceptors.i1.value = access
a1.sources.r2.type = exec
a1.sources.r2.command = tail -F /export/services/taillogs/nginx.log
a1.sources.r2.interceptors = i2
a1.sources.r2.interceptors.i2.type = static
a1.sources.r2.interceptors.i2.key = type
a1.sources.r2.interceptors.i2.value = nginx
a1.sources.r3.type = exec
a1.sources.r3.command = tail -F/export/services/taillogs/web.log
a1.sources.r3.interceptors = i3
a1.sources.r3.interceptors.i3.type = static
a1.sources.r3.interceptors.i3.key = type
a1.sources.r3.interceptors.i3.value = web
# Describe the sink
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = node01
a1.sinks.k1.port = 41414
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 20000
a1.channels.c1.transactionCapacity = 10000
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sources.r2.channels = c1
a1.sources.r3.channels = c1
a1.sinks.k1.channel = c1
服务端配置文件开发
在node01上面开发flume配置文件
cd /export/services/apache-flume-1.8.0-bin/conf/
vim avro_source_hdfs_sink.conf
配置如下:
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# 定义source
a1.sources.r1.type = avro
a1.sources.r1.bind = 192.168.188.100
a1.sources.r1.port =41414
# 添加时间拦截器
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = org.apache.flume.interceptor.TimestampInterceptor$Builder
# 定义channels
a1.channels.c1.type = memory
a1.channels.c1.capacity = 20000
a1.channels.c1.transactionCapacity = 10000
# 定义sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path=hdfs://192.168.188.100:8020/source/logs/%{type}/%Y%m%d
a1.sinks.k1.hdfs.filePrefix =events
a1.sinks.k1.hdfs.fileType = DataStream
a1.sinks.k1.hdfs.writeFormat = Text
# 时间类型
a1.sinks.k1.hdfs.useLocalTimeStamp = true
# 生成的文件不按条数生成
a1.sinks.k1.hdfs.rollCount = 0
# 生成的文件按时间生成
a1.sinks.k1.hdfs.rollInterval = 30
# 生成的文件按大小生成
a1.sinks.k1.hdfs.rollSize = 10485760
# 批量写入hdfs的个数
a1.sinks.k1.hdfs.batchSize = 10000
# flume操作hdfs的线程数(包括新建,写入等)
a1.sinks.k1.hdfs.threadsPoolSize=10
# 操作hdfs超时时间
a1.sinks.k1.hdfs.callTimeout=30000
# 组装source、channel、sink
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
采集端文件 生成脚本
在node03与node02上面开发shell脚本,模拟数据生成
cd /export/services/shells
vim server.sh
# !/bin/bash
while true
do
date >> /export/services/taillogs/access.log;
date >> /export/services/taillogs/web.log;
date >> /export/services/taillogs/nginx.log;
sleep 0.5;
done
顺序启动服务
node01启动flume实现数据收集
cd /export/services/apache-flume-1.8.0-bin/
bin/flume-ng agent -c conf -f conf/avro_source_hdfs_sink.conf -name a1 -Dflume.root.logger=INFO,console
node03与node02启动flume实现数据监控
cd /export/services/apache-flume-1.8.0-bin/
bin/flume-ng agent -c conf -f conf/exec_source_avro_sink.conf -name a1 -Dflume.root.logger=INFO,console
node03 与node02启动生成文件脚本
cd /export/services/shells/
sh server.sh
转载:https://blog.csdn.net/qq_39410381/article/details/106305101